The derived category of a category quasi-coherent sheaves.
A. I. Bondal, D. O. Orlov, Derived categories of coherent sheaves, Proc. Internat. Congress of Mathematicians vol. II 46–54 (Beijing, 2002)
V. A. Lunts, D. O. Orlov, Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc. 23 (2010), 853-908, journal, arXiv:0908.4187, doi
Dmitri Orlov, Derived categories of coherent sheaves and motives.
Dmitri Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, 503–531, Progr. Math., 270, Birkhauser, Boston, Inc., Boston, MA, 2009 math.AG/0503632
A. N. Kapustin, D. O. Orlov, Lectures on mirror symmetry, derived categories, and D-branes (Russian) Uspekhi Mat. Nauk 59 (2004), no. 5 (359), 101–134; English translation in Russian Math. Surveys 59 (2004), no. 5, 907–940 math.AG/0308173
A. I. Bondal, D. O. Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compos. Math. 125 (2001), 327–344 doi:10.1023/A:1002470302976
L.Katzarkov, M.Kontsevich, T.Pantev, Hodge theoretic aspects of mirror symmetry, arxiv:0806.0107
Introduction and review:
On Rozansky-Witten weight systems as Lie algebra weight systems for Lie algebra objects in the derived category of quasi-coherent sheaves, and unified Wheels theorem:
On t-structures on derived categories of coherent sheaves:
Dan Abramovich, Alexander Polishchuk, Sheaves of t-structures and valuative criteria for stable complexes, J. reine angew. Math. 590 (2006) 89-130 [arXiv:math/0309435, doi:10.1515/CRELLE.2006.005]
Alexander Polishchuk, Constant families of t-structures on derived categories of coherent sheaves, Moscow Math. J. 7 (2007) 109-134 [arXiv:math/0606013]
Last revised on April 7, 2023 at 18:02:13. See the history of this page for a list of all contributions to it.