Informally, a free functor is a left adjoint to a forgetful functor – part of a free-forgetful adjunction. (This is informal because the concept of forgetful functor is informal; any functor might be viewed as forgetful, so any left adjoint might be viewed as free, while in practice only some are.)
Formally, with respect to a monad or algebraic theory or operad , and the corresponding category of algebras over a monad or algebras over an algebraic theory or algebras over an operad, respectively, in some category , the free -algebra functor is the left adjoint to the forgetful functor .
Such a functor may be thought of as sending any object of to the -algebra freely generated by it.
In general, if is thought of as a forgetful functor and is its left adjoint, then is the free C-object on an object of .
More generally, even if the entire left adjoint doesn’t exist, a free object on can be defined using a universal property, as “what the value of would be if existed.” Conversely, if a free object on exists for all , then the left adjoint can be assembled from them.
Dually, a cofree functor is a right adjoint to a forgetful functor.
For the classical functors which forget algebraic structure, cofree functors are less common than free functors.
Classically, examples of free constructions were characterized by a universal property. For example, in the case of the free group on a set the universal property states that any map as sets uniquely extends to a group homomorphism . When such a free construction can be realized as a left adjoint functor, this universal property is just a transliteration of the fact that the unit of the free-forgetful adjunction is an initial object in the comma category (where is the forgetful functor out of the category of algebras, see e.g. the proof of Freyd’s general adjoint functor theorem.)
the free monoid functor Set Mon;
the free module functor Set Mod for a rig ;
the free group functor Set Grp;
the group completion functor Mon Grp
in the abelian case in particular:
the Grothendieck group completion functor CMon Ab
the free abelian group functor Set Ab;
the abelianization functor Grp Ab;
the free category functor Cat;
the free operad functor;
the unitisation functor Rng Ring.
Free constructions on categories:
One formal sort of free functor is the left adjoint , where is a monad on the category and is its Eilenberg-Moore category (the category of -algebras). This includes all of the examples above and many others.
A general way to construct free functors is with a transfinite construction of free algebras (in set-theoretic foundations), or with an inductive type or higher inductive type (in type-theoretic foundations).
The cofree coalgebra on a vector space. More generally, if is an operad in a symmetric monoidal category , its associated PROP, and if is a monoidal -category, then an -coalgebra in may be identified with a monoidal -functor . Under suitable completeness assumptions on , the forgetful functor - has a right adjoint, and this forgetful functor is comonadic.
If is a monoid, the forgetful functor on (left) -sets has a right adjoint , where acts on functions according to the rule . This forgetful functor is comonadic. Much more generally, the right adjoint to the underlying functor ( the set of objects of a category ) is comonadic. More generally still, if is complete and is a functor between small categories, the functor has a right adjoint (although will not normally be comonadic in this generality).
The forgetful functor , taking a small category to its set of objects, has a right adjoint for which is a category whose objects are elements of and where there is exactly one morphism for any . The category , which is a groupoid, is known as the chaotic category on , or the indiscrete category on .
When is topological concrete category over , as for example the forgetful functor , it frequently happens that possesses a right adjoint, assigning to a set an “indiscrete topology”.
The ring of Witt vectors is the co-free Lambda-ring.
A rich source of examples is coreflective subcategories, which are comonadic over the ambient category. For example, the category of compactly generated spaces is coreflective in the category of all spaces, .
Last revised on October 12, 2021 at 15:26:20. See the history of this page for a list of all contributions to it.