nLab
homothety
Contents
Definition
Traditional
In the original sense, a homothety is a function from a Euclidean space to itself, which is a dilation centered at a given point of the Euclidean space. Hence a homothety of a Cartesian space ℝ n \mathbb{R}^n is a function ℝ n → ℝ n \mathbb{R}^n \to \mathbb{R}^n given by multiplication with some κ ∈ ℝ − { 0 } \kappa \in \mathbb{R}-\{0\} .
Such dilations are linear functions κ ∈ GL ( ℝ n ) \kappa \in GL(\mathbb{R}^n) which commute, in particular, with all orthogonal transformations on ℝ n \mathbb{R}^n . In view of this, in the context of Cartan geometry one says more generally that given a vector space V V and a group homomorphism ϕ : G ⟶ GL ( V ) \phi \colon G \longrightarrow GL(V) to the general linear group of V V , then a homothety of this data is an element κ ∈ GL ( V ) \kappa \in GL(V) such that for all g ∈ G g \in G one has
κ ∘ ϕ ( g ) = ϕ ( g ) ∘ κ .
\kappa \circ \phi(g) = \phi(g) \circ \kappa
\,.
Given then two G-structures on a smooth manifold modeled on V V , then a homothety between these G G -structures is a homothety of the local models which transforms the two G G -structures into each other.
General abstract
This has a succinct diagrammatic formulation in the formulation of G G -structures on V V -manifolds in differential cohesion (see at differential cohesion – G-Structures ). Write
G Struc : B G ⟶ B GL ( V )
G \mathbf{Struc} \colon \mathbf{B}G\longrightarrow \mathbf{B}GL(V)
for the delooping of the group homomorphism defining the kind of G G -structure. Then a homothety is simply a homotopy from G Struc G\mathbf{Struc} to itself
B G ↙ ↘ G Struc G Struc ↘ ⇙ ≃ ↙ B GL ( V ) .
\array{
& & \mathbf{B}G
\\
& \swarrow && \searrow^{\mathrlap{G\mathbf{Struc}}}
\\
& {}_{\mathllap{G\mathbf{Struc}}}\searrow &\swArrow_{\simeq}& \swarrow
\\
&& \mathbf{B}GL(V)
}
\,.
Accordingly, for g 1 , g 2 : τ X ⟶ G Struc \mathbf{g}_1, \mathbf{g}_2 \colon \tau_X\longrightarrow G \mathbf{Struc} two G G -structures on a V V -manifold
X ⟶ B G τ X ↘ ⇙ g i ↙ G Struc B GL ( V )
\array{
X && \longrightarrow && \mathbf{B}G
\\
& {}_{\mathllap{\tau_X}}\searrow &\swArrow_{\mathrlap{\mathbf{g}_i}}& \swarrow_{\mathrlap{G}\mathbf{Struc}}
\\
&& \mathbf{B}GL(V)
}
then a homothety from g 1 \mathbf{g}_1 to g 2 \mathbf{g}_2 is a homotopy of homotopies of the form
X ⟶ B G τ X ↘ ⇙ g 1 ↙ G Struc ⇙ ≃ ↘ G Struc B GL ( V ) = B GL ( V ) ⇒ ≃ X ⟶ B G τ X ↘ ⇙ g 2 ↙ G Struc B GL ( V )
\array{
X && \longrightarrow && \mathbf{B}G
\\
& {}_{\mathllap{\tau_X}}
\searrow
&\swArrow_{\mathrlap{\mathbf{g}_1}}&
\swarrow_{\mathrlap{G\mathbf{Struc}}}
&\swArrow_{\simeq}&
\searrow^{\mathrlap{G\mathbf{Struc}}}
\\
&& \mathbf{B}GL(V) && =& \mathbf{B}GL(V)
}
\;\;\;\;\;\;
\stackrel{\simeq}{\Rightarrow}
\;\;\;\;\;\;
\array{
X && \longrightarrow && \mathbf{B}G
\\
& {}_{\mathllap{\tau_X}}\searrow &\swArrow_{\mathrlap{\mathbf{g}_2}}& \swarrow_{\mathrlap{G\mathbf{Struc}}}
\\
&& \mathbf{B}GL(V)
}
References
Last revised on May 30, 2015 at 06:41:51.
See the history of this page for a list of all contributions to it.