nLab orthogonal group



Group Theory

\infty-Lie theory

∞-Lie theory (higher geometry)


Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids



Related topics


\infty-Lie groupoids

\infty-Lie groups

\infty-Lie algebroids

\infty-Lie algebras



For nn \in \mathbb{N} the orthogonal group is the group of isometries of a real nn-dimensional Hilbert space. This is naturally a Lie group. This is canonically isomorphic to the group of n×nn \times n orthogonal matrices.

More generally there is a notion of orthogonal group of an inner product space.

The analog for complex Hilbert spaces is the unitary group.




The orthogonal group O(n)O(n) is compact topological space, hence in particular a compact Lie group.

Homotopy groups


For n,Nn, N \in \mathbb{N}, nNn \leq N, then the canonical inclusion of orthogonal groups

O(n)O(N) O(n) \hookrightarrow O(N)

is an (n-1)-equivalence, hence induces an isomorphism on homotopy groups in degrees <n1\lt n-1 and a surjection in degree n1n-1.


Consider the coset quotient projection

O(n)O(n+1)O(n+1)/O(n). O(n) \longrightarrow O(n+1) \longrightarrow O(n+1)/O(n) \,.

By prop. and by this corollary, the projection O(n+1)O(n+1)/O(n)O(n+1)\to O(n+1)/O(n) is a Serre fibration. Furthermore, example identifies the coset with the n-sphere

S nO(n+1)/O(n). S^{n}\simeq O(n+1)/O(n) \,.

Therefore the long exact sequence of homotopy groups of the fiber sequence O(n)O(n+1)S nO(n)\to O(n+1)\to S^n looks like

π +1(S n)π (O(n))π (O(n+1))π (S n) \cdots \to \pi_{\bullet+1}(S^n) \longrightarrow \pi_\bullet(O(n)) \longrightarrow \pi_\bullet(O(n+1)) \longrightarrow \pi_\bullet(S^n) \to \cdots

Since π <n(S n)=0\pi_{\lt n}(S^n) = 0, this implies that

π <n1(O(n))π <n1(O(n+1)) \pi_{\lt n-1}(O(n)) \overset{\simeq}{\longrightarrow} \pi_{\lt n-1}(O(n+1))

is an isomorphism and that

π n1(O(n))π n1(O(n+1)) \pi_{n-1}(O(n)) \longrightarrow \pi_{n-1}(O(n+1))

is surjective. Hence now the statement follows by induction over NnN-n.

It follows that the homotopy groups π k(O(n))\pi_k(O(n)) are independent of nn for n>k+1n \gt k + 1 (the “stable range”). So if O=lim nO(n)O = \underset{\longrightarrow}{\lim}_n O(n), then π k(O(n))=π k(O)\pi_k(O(n)) = \pi_k(O). By Bott periodicity we have

π 8k+0(O) = 2 π 8k+1(O) = 2 π 8k+2(O) =0 π 8k+3(O) = π 8k+4(O) =0 π 8k+5(O) =0 π 8k+6(O) =0 π 8k+7(O) =. \array{ \pi_{8k+0}(O) & = \mathbb{Z}_2 \\ \pi_{8k+1}(O) & = \mathbb{Z}_2 \\ \pi_{8k+2}(O) & = 0 \\ \pi_{8k+3}(O) & = \mathbb{Z} \\ \pi_{8k+4}(O) & = 0 \\ \pi_{8k+5}(O) & = 0 \\ \pi_{8k+6}(O) & = 0 \\ \pi_{8k+7}(O) & = \mathbb{Z}. }

In the unstable range for low degrees they instead start out as follows

GGπ 1\pi_1π 2\pi_2π 3\pi_3π 4\pi_4π 5\pi_5π 6\pi_6π 7\pi_7π 8\pi_8π 9\pi_9π 10\pi_10π 11\pi_11π 12\pi_12π 13\pi_13π 14\pi_14π 15\pi_15
SO(3)SO(3) 2\mathbb{Z}_20\mathbb{Z} 2\mathbb{Z}_2 2\mathbb{Z}_2 12\mathbb{Z}_{12} 2\mathbb{Z}_{2} 2\mathbb{Z}_{2} 3\mathbb{Z}_{3} 15\mathbb{Z}_{15} 2\mathbb{Z}_{2} 2 2\mathbb{Z}_{2}^{\oplus 2} 2 12\mathbb{Z}_2\oplus\mathbb{Z}_{12} 2 2 84\mathbb{Z}_2^{\oplus 2}\oplus\mathbb{Z}_{84} 2 2\mathbb{Z}_2^{\oplus 2}
SO(4)SO(4)0 2\mathbb{Z}^{\oplus 2} 2 2\mathbb{Z}_{2}^{\oplus 2} 2 2\mathbb{Z}_{2}^{\oplus 2} 12 2\mathbb{Z}_{12}^{\oplus 2} 2 2\mathbb{Z}_{2}^{\oplus 2} 2 2\mathbb{Z}_{2}^{\oplus 2} 3 2\mathbb{Z}_{3}^{\oplus 2} 15 2\mathbb{Z}_{15}^{\oplus 2} 2 2\mathbb{Z}_{2}^{\oplus 2} 2 4\mathbb{Z}_{2}^{\oplus 4} 2 2 12 2\mathbb{Z}_2^{\oplus 2}\oplus\mathbb{Z}_{12}^{\oplus 2} 2 4 84 2\mathbb{Z}_2^{\oplus 4}\oplus\mathbb{Z}_{84}^{\oplus 2} 2 4\mathbb{Z}_2^{\oplus 4}
SO(5)SO(5)\mathbb{Z} 2\mathbb{Z}_2 2\mathbb{Z}_20\mathbb{Z}00 120\mathbb{Z}_{120} 2\mathbb{Z}_{2} 2 2\mathbb{Z}_{2}^{\oplus 2} 2 4\mathbb{Z}_2\oplus\mathbb{Z}_4 1680\mathbb{Z}_{1680} 2\mathbb{Z}_2
SO(6)SO(6)0\mathbb{Z}0\mathbb{Z} 24\mathbb{Z}_{24} 2\mathbb{Z}_2 2 120\mathbb{Z}_2\oplus\mathbb{Z}_{120} 4\mathbb{Z}_{4} 60\mathbb{Z}_{60} 4\mathbb{Z}_4 2 1680\mathbb{Z}_2\oplus\mathbb{Z}_{1680} 2 72\mathbb{Z}_2\oplus\mathbb{Z}_{72}
SO(7)SO(7)00\mathbb{Z} 2 2\mathbb{Z}_{2}^{\oplus 2} 2 2\mathbb{Z}_{2}^{\oplus 2} 8\mathbb{Z}_{8} 2\mathbb{Z}_2\oplus\mathbb{Z}0 2\mathbb{Z}_2 2 8 2520\mathbb{Z}_2\oplus\mathbb{Z}_8\oplus\mathbb{Z}_{2520} 2 4\mathbb{Z}_2^{\oplus 4}
SO(8)SO(8)0 2\mathbb{Z}^{\oplus 2} 2 3\mathbb{Z}_{2}^{\oplus 3} 2 3\mathbb{Z}_{2}^{\oplus 3} 8 24\mathbb{Z}_{8} \oplus \mathbb{Z}_{24} 2\mathbb{Z}_2 \oplus \mathbb{Z}0 2\mathbb{Z}^{\oplus 2} 2 8 120 2520\mathbb{Z}_2\oplus\mathbb{Z}_8\oplus\mathbb{Z}_{120}\oplus\mathbb{Z}_{2520} 2 7\mathbb{Z}_2^{\oplus 7}
SO(9)SO(9)\mathbb{Z} 2 2\mathbb{Z}_{2}^{\oplus 2} 2 2\mathbb{Z}_{2}^{\oplus 2} 8\mathbb{Z}_{8} 2\mathbb{Z}_2\oplus \mathbb{Z}0 2\mathbb{Z}_2 2 8\mathbb{Z}_2\oplus\mathbb{Z}_8 2 3\mathbb{Z}_2^{\oplus 3}\oplus\mathbb{Z}
SO(10)SO(10) 2\mathbb{Z}_{2} 2\mathbb{Z}_2\oplus \mathbb{Z} 4\mathbb{Z}_{4}\mathbb{Z} 12\mathbb{Z}_{12} 2\mathbb{Z}_2 8\mathbb{Z}_8 2 2\mathbb{Z}_2^{\oplus 2}\oplus\mathbb{Z}
SO(11)SO(11) 2\mathbb{Z}_{2} 2\mathbb{Z}_{2}\mathbb{Z} 2\mathbb{Z}_{2} 2 2\mathbb{Z}_2^{\oplus 2} 8\mathbb{Z}_8 2\mathbb{Z}_2\oplus\mathbb{Z}
SO(12)SO(12)0 2\mathbb{Z}^{\oplus 2} 2 2\mathbb{Z}_{2}^{\oplus 2} 2 2\mathbb{Z}_2^{\oplus 2} 4 24\mathbb{Z}_4\oplus\mathbb{Z}_{24} 2\mathbb{Z}_2\oplus\mathbb{Z}
SO(13)SO(13)\mathbb{Z} 2\mathbb{Z}_2 2\mathbb{Z}_2 8\mathbb{Z}_8 2\mathbb{Z}_2\oplus\mathbb{Z}
SO(14)SO(14)0\mathbb{Z} 4\mathbb{Z}_4\mathbb{Z}
SO(15)SO(15)0 2\mathbb{Z}_2\mathbb{Z}
SO(16)SO(16)0 2\mathbb{Z}^{\oplus 2}

The SO(6)SO(6) row can be found using Mimura-Toda 63, using Spin(6)=SU(4)Spin(6) = SU(4), and that Spin(6)Spin(6) is a 2\mathbb{Z}_2-covering space of SO(6)SO(6). The SO(7)SO(7) row can be derived from the homotopy groups of Spin(7)Spin(7) as found in Mimura 67. Otherwise the table is given in columns π k\pi_k, k=10,,15k=10,\ldots, 15, and in rows SO(n)SO(n), n=8,,17n=8,\ldots,17, by the Encyclopedic Dictionary of Mathematics, Table 6.VII in Appendix A.

Note that the maps

π 3(SO(3))π 3(SO(4))π 3(SO(5)) \array{ \pi_3(SO(3)) \longrightarrow \pi_3(SO(4)) \longrightarrow \pi_3(SO(5)) \\ \mathbb{Z}\longrightarrow \mathbb{Z}\oplus \mathbb{Z} \longrightarrow\mathbb{Z} }

are inclusion of the first summand followed by the map sending (1,0)2(1,0)\mapsto 2 and (0,1)1(0,1)\mapsto 1, so that stabilization from SO(3)SO(3) to SO(5)SO(5) induces multiplication by 22 on π 3\pi_3 (e.g. equations (2.1) and (2.2) in (Tamura 57) and surrounding discussion). The same is also true for π 7(SO(7))π 7(SO(8))π 7(SO(9))\pi_7(SO(7)) \to \pi_7(SO(8)) \to \pi_7(SO(9)).

Homology and cohomology

On the ordinary cohomology of the classifying spaces B O ( n ) B O(n) and B S O ( n ) B S O(n)

Whitehead tower and higher orientation structures

The Whitehead tower of the orthogonal group plays an important role in applications related to quantum physics.

The first steps are

Fivebrane(n)String(n)Spin(n)SO(n)O(n). \cdots \to Fivebrane(n) \to String(n) \to Spin(n) \to SO(n) \to \mathrm{O}(n) \,.

Fivebrane group to String group to Spin group to special orthogonal group to orthogonal group.

Given a manifold XX, lifts of the structure map XO(n)X \to \mathcal{B}O(n) of the O(n)O(n)-principal bundle to which the tangent bundle is associated through this tower define, respectively

on XX.

Coset spaces


The n-spheres are coset spaces of orthogonal groups

S nO(n+1)/O(n). S^n \simeq O(n+1)/O(n) \,.

For fix a unit vector in n+1\mathbb{R}^{n+1}. Then its orbit under the defining O(n+1)O(n+1)-action on n+1\mathbb{R}^{n+1} is clearly the canonical embedding S n n+1S^n \hookrightarrow \mathbb{R}^{n+1}. But precisely the subgroup of O(n+1)O(n+1) that consists of rotations around the axis formed by that unit vector stabilizes it, and that subgroup is isomorphic to O(n)O(n), hence S nO(n+1)/O(n)S^n \simeq O(n+1)/O(n).


For nkn \leq k, the coset

V n( k)O(k)/O(kn) V_n(\mathbb{R}^k) \coloneqq O(k)/O(k-n)

is called the nnth real Stiefel manifold of k\mathbb{R}^k.


The Stiefel manifold V n( k)V_n(\mathbb{R}^k) (example ) is (k-n-1)-connected.


Consider the coset quotient projection

O(kn)O(k)O(k)/O(kn)=V n( k). O(k-n) \longrightarrow O(k) \longrightarrow O(k)/O(k-n) = V_n(\mathbb{R}^k) \,.

By prop. and by this corollary the projection O(k)O(k)/O(kn)O(k)\to O(k)/O(k-n) is a Serre fibration. Therefore there is induced the long exact sequence of homotopy groups of this fiber sequence, and by prop. it has the following form in degrees bounded by nn:

π kn1(O(kn))epiπ kn1(O(k))0π kn1(V n( k))0π 1<kn1(O(k))π 1<kn1(O(kn)). \cdots \to \pi_{\bullet \leq k-n-1}(O(k-n)) \overset{epi}{\longrightarrow} \pi_{\bullet \leq k-n-1}(O(k)) \overset{0}{\longrightarrow} \pi_{\bullet \leq k-n-1}(V_n(\mathbb{R}^k)) \overset{0}{\longrightarrow} \pi_{\bullet-1 \lt k-n-1}(O(k)) \overset{\simeq}{\longrightarrow} \pi_{\bullet-1 \lt k-n-1}(O(k-n)) \to \cdots \,.

This implies the claim. (Exactness of the sequence says that every element in π n1(V n( k))\pi_{\bullet \leq n-1}(V_n(\mathbb{R}^k)) is in the kernel of zero, hence in the image of 0, hence is 0 itself.)

\cdots\to fivebrane group \to string group \to spin group \to special orthogonal group \to orthogonal group

groupsymboluniversal coversymbolhigher coversymbol
orthogonal groupO(n)\mathrm{O}(n)Pin groupPin(n)Pin(n)Tring groupTring(n)Tring(n)
special orthogonal groupSO(n)SO(n)Spin groupSpin(n)Spin(n)String groupString(n)String(n)
Lorentz groupO(n,1)\mathrm{O}(n,1)\,Spin(n,1)Spin(n,1)\,\,
anti de Sitter groupO(n,2)\mathrm{O}(n,2)\,Spin(n,2)Spin(n,2)\,\,
conformal groupO(n+1,t+1)\mathrm{O}(n+1,t+1)\,
Narain groupO(n,n)O(n,n)
Poincaré groupISO(n,1)ISO(n,1)Poincaré spin groupISO^(n,1)\widehat {ISO}(n,1)\,\,
super Poincaré groupsISO(n,1)sISO(n,1)\,\,\,\,
superconformal group


rotation groups in low dimensions:

Dynkin labelsp. orth. groupspin grouppin groupsemi-spin group

see also


Examples of sporadic (exceptional) isogenies from spin groups onto orthogonal groups are discussed in

The homotopy groups of O(n)O(n) are listed for instance in

  • Alexander Abanov, Homotopy groups of Lie groups 2009 (pdf)

  • M. Mimura and H. Toda, Homotopy Groups of SU(3)SU(3), SU(4)SU(4) and Sp(2)Sp(2), J. Math. Kyoto Univ. Volume 3, Number 2 (1963), 217-250. (Euclid)

  • M. Mimura, The Homotopy groups of Lie groups of low rank, Math. Kyoto Univ. Volume 6, Number 2 (1967), 131-176. (Euclid)

The ordinary cohomology and ordinary homology of the manifolds SO(n)SO(n) is discussed in

  • John Milnor, Jim Stasheff, Characteristic classes, Princeton Univ. Press (1974) [ISBN:9780691081229, doi:10.1515/9781400881826, pdf]

  • Edgar H. Brown, The Cohomology of BSO nB SO_n and BO nBO_n with Integer Coefficients, Proceedings of the American Mathematical Society Vol. 85, No. 2 (Jun., 1982), pp. 283-288 (jstor:2044298)

  • Mark Feshbach, The Integral Cohomology Rings of the Classifying Spaces of O(n)\mathrm{O}(n) and SO(n)\mathrm{SO}(n), Indiana Univ. Math. J. 32 (1983), 511-516 (doi:10.1512/iumj.1983.32.32036)

  • Harsh V. Pittie, The integral homology and cohomology rings of SO(n) and Spin(n), Journal of Pure and Applied Algebra Volume 73, Issue 2, 19 August 1991, Pages 105–153 (doi:10.1016/0022-4049(91)90108-E))

  • Gerd Rudolph, Matthias Schmidt, around Theorem 4.2.23 of Differential Geometry and Mathematical Physics: Part II. Fibre Bundles, Topology and Gauge Fields, Theoretical and Mathematical Physics series, Springer 2017 (doi:10.1007/978-94-024-0959-8)

See also

  • Itiro Tamura, On Pontrjagin classes of homotopy types of manifolds, Journal of the mathematical society of Japan, Vol. 9 No. 2 , 1957 pdf

Last revised on March 4, 2024 at 21:57:16. See the history of this page for a list of all contributions to it.