A hypergroup is a algebraic structure similar to a group, but where the composition operation does not just take two elements to a single product element in the group, but to a subset of elements of the group.
It is a hypermonoid with additional groupal structure and property.
A canonical hypergroup is a set, , equipped with a commutative binary operation,
whose value is a non-empty subset of , and a zero element , such that
is the notation for the power set of . A related variant is the notion of n-valued group.
The additive structure underlying a hyperring is a canonical hypergroup. See there for more examples.
See also at hypermagma and multivalued group.
J. Delsarte, Hypergroupes et opérateurs de permutation et de transmutation, La théorie des équations aux dérivées partielles. Nancy, 9-15 avril 1956, pp. 29–45 Colloq. Internat. CNRS, LXXI [International Colloquia of the CNRS] Centre National de la Recherche Scientifique, Paris, 1956 MR0116151
J. Jantosciak, Transposition hypergroups: Noncommutative join spaces , J. Algebra 187 (1997) pp.97-119.
G. L. Litvinov, Hypergroups and hypergroup algebras , arXiv:1109.6596
F. Marty, Sur une généralization de la notion de groupe , IV Congrès des Mathématiciens Scandinaves, Stockholm 1934.
P.-H. Zieschang, Hypergroups, ISBN 978-3-031-39488-1, XV+391 pages, Springer, Cham, 2023.
Last revised on January 8, 2025 at 16:31:39. See the history of this page for a list of all contributions to it.