Classical groups
Finite groups
Group schemes
Topological groups
Lie groups
Super-Lie groups
Higher groups
Cohomology and Extensions
Related concepts
The notion of -valued groups is an analogue of groups where the multiplication takes values in the -th “symmetric power” of the underlying set. 2-valued formal groups appeared first in the study of characteristic classes by Buchstaber & Novikov 1971.
Let be a positive integer. Denote by the -th symmetric power of a set , or equivalently the set of multisets of not necessarily different elements in .
An -valued group is given by a set together with a function (“multiplication”)
satisfying:
(associativity) The following -element multisets are equal:
and ,
(unitality) there is a neutral element such that for all , ,
(inverses) For every there exists such that and .
Origin of the notion in multivalued formal groups appearing in complex oriented cohomology theory:
В. М. Бухштабер, С. П. Новиков, Формальные группы, степенные системы и операторы Адамса, Мат. Сборник (Н.С.) 84 (1971) 81–118;
English translation:
Victor M. Buchstaber, Sergei P. Novikov, Formal groups, power systems and Adams operators, Math. USSR-Sb. 13 (1971) 80-116 [doi:10.1070/SM1971v013n01ABEH001030]
Victor M. Buchstaber, Two-valued formal groups. Some applications to cobordisms, Uspehi Mat. Nauk 26 3 (1971), (159) 195–196 [MR 0461533]
Victor Buchstaber, §5 in: Cobordisms in problems of algebraic topology, J Math Sci 7 (1977) 629–653 [doi:10.1007/BF01084983]
The notion has in fact been sporadically studied much earlier, e.g. in the context of hypergroups.
Some newer articles
D. Coulette, F. Déglise, J Fasel, J. Hornbostel, Formal ternary laws and Buchstaber’s 2-groups, Manuscripta Math. (2023) doi
В. М. Бухштабер, Функциональные уравнения ассоциированные с теоремами сложения для эллиптических функций и двузначные алгебраические группы, Успехи Мат. Наук 45:3 (1990) 185–186 (transl.: V. M. Bukhstaber, Functional equations that are associated with addition theorems for elliptic functions and two-valued algebraic groups, Russian Math. Surveys 45:3 (1990) 213–215.)
In 2010. V. Dragović has observed that the integrability of Kovalevskaia top is related to associativity of certain -valued group. A related later developments on integrable systems are touched upon in:
Last revised on April 16, 2024 at 12:21:24. See the history of this page for a list of all contributions to it.