In coding theory, a linear code is a linear subspace of a vector space of finite dimension $d$ over a prime field $\mathbb{F}_p$, i.e. a vector space isomorphic to $(\mathbb{F}_p)^d$, for some prime number $p$ (often $p = 2$). The dimension $d$ of the vector space is also called the length of the linear code.
Patrick J. Morandi, Error Correcting Codes and Algebraic Curves , lecture notes New Mexico State University 2001. (pdf)
Jay A. Wood, Spinor groups and algebraic coding theory , J.Combinatorial Th. Series A 51 (1989) pp.277-313. (available online)
Last revised on February 13, 2017 at 15:39:32. See the history of this page for a list of all contributions to it.