nLab localization of an abelian category

Abstract localization functors among abelian categories have several descriptions. Additional descriptions exist if in addition the category is Grothendieck.

A nonempty subcategory of an abelian category is thick (in the sense of Pierre Gabriel; called dense in Popescu) if it is closed under subobjects, quotients and extensions (in particular it is full and abelian). Some authors say Serre subcategory for a thick subcategory, though a stronger version of the notion of Serre subcategory may be appropriate (and is occasionally so defined) if the Abelian category is not the full subcategory of modules over a ring or ringoid (when the two notions agree).

Following Jean-Pierre Serre, given a thick subcategory TT, define the quotient category A/TA/T whose objects are the objects of AA and where the morphisms in A/TA/T are defined by

Hom A/T(X,Y):=colimHom A(X,Y/Y),\mathrm{Hom}_{A/T}(X,Y) := \mathrm{colim}\, \mathrm{Hom}_A(X',Y/Y'),

where the colimit is over all X,YX',Y' in AA such that YY' and X/XX/X' are in TT. There is a canonical quotient functor Q:AA/TQ: A\to A/T which is the identity on objects. The quotient category A/TA/T is abelian.

Last revised on August 30, 2022 at 11:07:44. See the history of this page for a list of all contributions to it.