nLab
opposite adjunction
Contents
Contents
Idea
Given a pair of adjoint functors
𝒟 ⊥ ⟶ R ⟵ L 𝒞
\mathcal{D}
\underoverset
{\underset{R}{\longrightarrow}}
{\overset{L}{\longleftarrow}}
{\;\;\;\;\bot\;\;\;\;}
\mathcal{C}
there is an induced adjunction of opposite functors between their opposite categories of the form
𝒞 op ⊥ ⟶ L op ⟵ R op 𝒟 op .
\mathcal{C}^{op}
\underoverset
{\underset{L^{op}}{\longrightarrow}}
{\overset{R^{op}}{\longleftarrow}}
{\;\;\;\;\bot\;\;\;\;}
\mathcal{D}^{op}
\,.
Hence where L L was the left adjoint , its opposite becomes the right adjoint , and dually for R R .
This is immediate from the definition of opposite categories and the characterization of adjoint functors via the corresponding hom-isomorphism .
The adjunction unit of the opposite adjunction has as components the components of the original adjunction counit , regarded in the opposite category, and dually:
ϵ d R op L op : R op ∘ L op ( d ) → ( η d R L ) op d , AAAAAA η c L op R op : c → ( ϵ c L R ) op L op ∘ R op ( c ) .
\epsilon^{R^{op} L^{op}}_{d}
\;\colon\;
R^{op}\circ L^{op}(d)
\xrightarrow{\;\; \big( \eta^{R L}_d \big)^{op} \;\;}
d
\,,
{\phantom{AAAAAA}}
\eta^{L^{op} R^{op}}_{c}
\;\colon\;
c
\xrightarrow{\;\; \big( \epsilon^{L R}_c \big)^{op} \;\;}
L^{op} \circ R^{op}(c)
\,.
Last revised on February 19, 2023 at 13:50:57.
See the history of this page for a list of all contributions to it.