nLab
opposite internal relation
Contents
Context
Relations
Category theory
Contents
Definition
Let C C be a finitely complete category . This means that C C is symmetric, and for objects X X and Y Y there exist isomorphisms B X , Y : X × Y ≅ Y × X B_{X, Y}: X \times Y \cong Y \times X and B Y , X : Y × X ≅ X × Y B_{Y, X}: Y \times X \cong X \times Y such that B X , Y ∘ B Y , X = id X × Y B_{X, Y} \circ B_{Y, X} = id_{X \times Y} and B Y , X ∘ B X , Y = id Y × X B_{Y, X} \circ B_{X, Y} = id_{Y \times X} . Given an internal relation R ↪ ( s , t ) X × Y R\stackrel{(s,t)}\hookrightarrow X \times Y , the pullback of the internal relation ( s , t ) (s,t) along the braiding B Y , X B_{Y, X} is the opposite internal relation span
R ← † R op , R R op ↪ ( t , s ) Y × X R \stackrel{\dagger_{R^\op,R}}\leftarrow R^\op\stackrel{(t,s)}\hookrightarrow Y \times X
with a morphism † R , R op : R → R op \dagger_{R,R^\op}:R \to R^\op such that † R , R op ∘ † R op , R = id R op \dagger_{R,R^\op} \circ \dagger_{R^\op,R} = id_{R^\op} and † R op , R ∘ † R , R op = id R \dagger_{R^\op,R} \circ \dagger_{R,R^\op} = id_{R} .
See also
Last revised on May 14, 2022 at 16:46:12.
See the history of this page for a list of all contributions to it.