In measure theory, a **$\sigma$-continuous valuation** on a $\sigma$-complete lattice $(L, \leq, \bot, \vee, \top, \wedge, \Vee)$ is a valuation $\mu:L \to [0, \infty]$ such that the $\sigma$-continuity condition is satisfied: for all sequences $s:\mathbb{N} \to L$, if $s(n) \leq s(n + 1)$ for all natural numbers $n \in\mathbb{N}$, then

$\mu(\Vee_{n:\mathbb{N}} s(n)) \leq \sup_{n:\mathbb{N}} \mu(s(n))$

- Alex Simpson,
*Measure, randomness and sublocales*, Annals of Pure and Applied Logic, Volume 163, Issue 11, November 2012, Pages 1642-1659. (doi:10.1016/j.apal.2011.12.014)

Last revised on October 25, 2023 at 01:34:02. See the history of this page for a list of all contributions to it.