,
,
,
,
(, , )
: , , ,
,
,
,
,
, ,
,
/
,
,
,
,
,
,
,
,
,
/
,
()
, ,
,
,
, ,
, , , ,
,
,
,
,
Axiomatizations
-theorem
Tools
,
,
Structural phenomena
Types of quantum field thories
,
, ,
examples
, , , ,
, ,
Fell’s theorem is about a property of vector states of a C-star algebra, it says that if the kernels of two representations of the algebra coincide, then the vector states are mutually weak-* dense. This has a profound consequence for the AQFT interpretation: A state represents the physical state of a physical system. Since one can always only perform a finite number of measurements, with a finite precision, it is only possible to determine a weak-* neigborhood of a given state. This means that it is not possible - not even in principle - to distinguish representations with coinciding kernels by measurements.
For this reason representations with coinciding kernels are sometimes called physically equivalent in the AQFT literature.
Let A be a unital $C^*-$algebra and $\pi_1, \pi_2$ be two representations of A on a Hilbert space H.
equivalence theorem Every vector state of $\pi_1$ is the weak-* limit of vector states of $\pi_2$ iff the kernel of $\pi_1$ contains the kernel of $\pi_2$.
Other theorems about the foundations and interpretation of quantum mechanics include:
Last revised on December 11, 2017 at 08:45:29. See the history of this page for a list of all contributions to it.