nLab spin network






  • Roger Penrose, Angular momentum: an approach to combinatorial space-time, in Quantum Theory and Beyond, ed. T. Bastin, Cambridge University Press, Cambridge, 1971, pp. 151–180 Penrose 71

  • R. Penrose, Applications of negative dimensional tensors,in Combinatorial Mathematics and its Applications, ed. D. Welsh, Academic Press, New York, 1971, pp. 221-244.

  • R. Penrose, On the nature of quantum geometry, in Magic Without Magic,ed. J. Klauder, Freeman,San Francisco, 1972, pp. 333-354. Penrose72

  • R. Penrose, Combinatorial quantum theory and quantized directions, in Advances in Twistor Theory,eds. L. Hughston and R. Ward, Pitman Advanced Publishing Program, San Francisco, 1979, pp.301-317

  • C. Rovelli and L. Smolin, Spin networks in quantum gravity, Phys. Rev.D52(1995), 5743-5759.

  • J. Barrett and L. Crane, Relativistic spin networks and quantum gravity, J. Math. Phys.39(1998), 3296–3302. gr-qc/9709028

  • J.C.Baez,“ Introduction to Spin Foam Models of BFBF Theory and Quantum Gravity,’‘Lect. Notes Phys. 543, 25-93 (2000), doi:10.1007/3-540-46552-9, arXiv:gr-qc/9905087.

  • J.C.Baez,“in network states in gauge theory,’‘ Adv. Math. 117, 253-272 (1996), doi:10.1006/aima.1996.0012, [arXiv:gr-qc/9411007 gr-qc].

  • J.C Baez, “in Networks in Nonperturbative Quantum Gravity’’, The Interface of Knots and Physics, ed. Louis Kauffman, A.M.S., Providence, 1996, pp. 167-203 gr-qc/9504036

  • E.Bianchi, P.Dona and S.Speziale,“lyhedra in loop quantum gravity,’‘Phys. Rev. D 83, 044035 (2011),doi:10.1103/PhysRevD.83.044035,arXiv:1009.3402 [gr-qc].

See also

Last revised on July 23, 2021 at 14:28:21. See the history of this page for a list of all contributions to it.