nLab transformation of adjoints

Redirected from "KΓ€hler vector spaces".
Contents

Contents

Idea

There are several notions of homomorphisms between pairs of adjoint functors, notably the notion of pairs of conjugate natural transformations (Def. below).

Definition

There are several layers of generality at which one may consider a notion of homomorphism between adjoint functors.

Here is a basic but important notion:

Definition

(conjugate transformations of adjoints)
Given a pair of pairs of adjoint functors between the same categories

(1)π’žβŠ₯⟡R 1⟢L 1π’Ÿ π’žβŠ₯⟡R 2⟢L 2π’Ÿ \array{ \mathcal{C} \underoverset {\underset{R_1}{\longleftarrow}} {\overset{L_1}{\longrightarrow}} {\;\;\; \bot \;\;\;} \mathcal{D} \\ \mathcal{C} \underoverset {\underset{R_2}{\longleftarrow}} {\overset{L_2}{\longrightarrow}} {\;\;\; \bot \;\;\;} \mathcal{D} }

then a pair of natural transformations between the adjoints of the same chirality, of this form

(2)Ξ»:L 1β†’L 2ρ:R 2β†’R 1, \lambda \,\colon\, L_1 \to L_2 \;\;\;\;\;\; \rho \,\colon\, R_2 \to R_1 \,,

is called conjugate for [MacLane (1971), Β§IV.7 (5)] or a pseudo-transformation of [Harpaz & Prasma (2015), Sec. 2.2] the given adjunctions if they make the following diagram of natural transformations between hom-sets commute:

(3)π’ž(L 2(βˆ’),(βˆ’)) ⟢∼ π’Ÿ((βˆ’),R 2(βˆ’)) π’ž(Ξ» (βˆ’),id (βˆ’))↓ ↓ π’Ÿ(id (βˆ’),ρ (βˆ’)) π’ž(L 1(βˆ’),(βˆ’)) ⟢∼ π’Ÿ((βˆ’),R 1(βˆ’)), \array{ \mathcal{C}\big( L_2(-) ,\, (-) \big) &\overset{\sim}{\longrightarrow}& \mathcal{D}\big( (-) ,\, R_2(-) \big) \\ \mathllap{{}^{ \mathcal{C}\big(\lambda_{(-)},\,id_{(-)}\big) }} \Big\downarrow && \Big\downarrow \mathrlap{{}^{ \mathcal{D}\big(id_{(-)},\,\rho_{(-)}\big) }} \\ \mathcal{C}\big( L_1(-) ,\, (-) \big) &\overset{\sim}{\longrightarrow}& \mathcal{D}\big( (-) ,\, R_1(-) \big) \mathrlap{\,,} }

where the horizontal maps are the given hom-isomorphisms (see there).

Such pairs of conjugate transformation compose via composition of their component natural transformations (cf. functor category) to yields a category

(4)Cat adj(π’ž,π’Ÿ) Cat_{adj}(\mathcal{C},\mathcal{D})

whose

Proposition

Given a pair of pairs of adjunctions as in (1) and given (just) λ\lambda as in (2) then there exists a unique ρ\rho as in (2) such that the conjugacy condition (3) holds.

In other words, the evident forgetful functor from Cat adj(π’ž,π’Ÿ)Cat_{adj}(\mathcal{C},\,\mathcal{D}) (4) to the hom-category Cat(π’ž,π’Ÿ)\Cat(\mathcal{C},\,\mathcal{D}) (i.e. the functor category) is a fully faithful functor exhibiting a full subcategory-inclusion:

(5)π’ž,π’ŸβˆˆObj(Cat)⊒Cat adj(π’ž,π’Ÿ)β†ͺCat(π’ž,π’Ÿ). \mathcal{C},\,\mathcal{D} \,\in\, Obj(Cat) \;\;\;\;\;\; \vdash \;\;\;\;\;\; Cat_{adj}(\mathcal{C},\,\mathcal{D}) \hookrightarrow Cat(\mathcal{C},\,\mathcal{D}) \,.

[Mac Lane (1971), p. 98]

In fact:

Proposition

(conjugate pairs are mates)
The conjugacy condition (3) means equivalently that λ\lambda and ρ\rho are mates in the sense of 2-category theory.

This is MacLane (1971) IV.7 Thm. 2 (6), p. 98 (not using the β€œmate”-terminology, though, which is due to Kelly & Street 2006).

Moreover:

Proposition

Conjugacy of transformations is compatible with horizontal composition (βˆ’)β‹…(βˆ’)(-)\cdot(-) of natural transformations as 2-morphisms in Cat (β€œwhiskering”), so that (5) extends to a horizontal composition-functor:

π’ž,π’Ÿ,β„°βˆˆCat⊒Cat adj(π’Ÿ,β„°)Γ—Cat adj(π’ž,π’Ÿ) ⟢ Cat adj(π’ž,β„°) ((Ξ»,ρ),(Ξ»β€²,ρ′)) ↦ (Ξ»β€²β‹…Ξ»,ρ⋅ρ′). \mathcal{C} ,\, \mathcal{D} ,\, \mathcal{E} \;\in\; Cat \;\;\;\;\;\;\;\;\;\; \vdash \;\;\;\;\;\;\;\;\;\; \array{ Cat_{adj}(\mathcal{D},\,\mathcal{E}) \times Cat_{adj}(\mathcal{C},\,\mathcal{D}) &\overset{}{\longrightarrow}& Cat_{adj}(\mathcal{C},\,\mathcal{E}) \\ \big( (\lambda, \rho) ,\, (\lambda', \rho') \big) &\mapsto& \big( \lambda' \cdot \lambda ,\, \rho \cdot \rho' \big) } \,.

[MacLane (1971), Β§IV.8 Thm. 2 & Exc. 1 (p. 102)]

Therefore, from Prop. and Prop. we have:

Definition

The (very large) wide and locally full sub-2-category Cat adj Cat_{adj} of Cat

(6)Cat adj⟢Cat Cat_{adj} \longrightarrow Cat

whose

[MacLane (1971), Β§IV.8 below (1), p. 102]

Properties

Relation to bifibrations

Proposition

Under the Grothendieck construction, the Grothendieck fibrations which arise from pseudofunctors β„¬βŸΆCat\mathcal{B} \longrightarrow Cat that factor through Cat adj Cat_{adj} (6) are equivalently the bifibrations.

Proof

A Grothendieck construction on a pseudofunctor yielding a bifibration is fairly immediately equivalent to all base change functors having an adjoint on the respective side (e.g. Jacobs (1998), Lem. 9.1.2). By the fact that Cat adj→CatCat_{adj} \to Cat is a locally full sub-2-category (Prop. ) this already means that the given pseudofunctor factors through Cat adjCat_adj, and essentially uniquely so.

See also Harpaz & Prasma (2015), Prop. 2.2.1.

References

See also:

Last revised on September 27, 2023 at 20:09:19. See the history of this page for a list of all contributions to it.