Spahn étale topos (Rev #2, changes)

Showing changes from revision #1 to #2: Added | Removed | Changed

G:=GrpdG:=\infty GrpdLet , HHE:=(H/X) E:=(H/X)_\Box be a topos, let (E:=(H/X) E:=(H/X)_\Box\Box (-closed/étale morphisms over \BoxXX-closed/étale morphisms over XX).

Str G loc(E)=Str G(E)=Fun lex(G,E)=Shv Ind(G op)(E)Str_G^{loc}(E)=Str_G(E)=Fun^{lex}(G,E)=Shv_{Ind(G^{op})}(E) (Remark 1.2.12 DAG V)

Lemma

In EE every monomorphism ist a strong monomorphism?.

(S L,R L)(S_L,R_L) factorization system on Str G(E)Str_G(E) where S R={morhismsinStr G loc(E)}={closedmorphisms}S_R=\{morhisms\, in\, Str_G^{loc}(E)\}=\{\Box-closed\, morphisms\} (Theorem 1.3.1 DAG V)

Proof

EE is a topos and hence any monomorphism in HH is strong. Let

Q Y Z W\array{ Q&\to&Y \\ \downarrow&\nearrow&\downarrow \\ Z&\to&W }

be a solved lifting problem with YWY\to W an etale monomorphism, ZWZ\to W an etale morphism, and QZQ\to Z an epimorphism. Then by the left cancellation property also ZYZ\to Y is etale. This remains true if we consider the lifting problem in H/XH/X.

Revision on December 9, 2012 at 20:14:09 by Stephan Alexander Spahn?. See the history of this page for a list of all contributions to it.