Spahn display of a formal p-divisible group (Rev #2, changes)

Showing changes from revision #1 to #2: Added | Removed | Changed

Let RCRingR\in CRing a commutative unitary ring. Let W(R)W(R) denote the ring of Witt vectors of RR. Let

w n:{W(R)R (x 0,,x i,)x 0 p n+px 1 p n1++p nx nw_n:\begin{cases} W(R)\to R \\ (x_0,\dots,x_i,\dots)\mapsto x_0^{p^n}+p x_1^{p^{n-1}}+ \dots + p^n x_n \end{cases}

denote the morphism of rings assigning to Witt vector its correspnding Witt polynomial. Let

w n:{W(R)W(R) (x 0,,x i,)(0,x 0,,x i,)w_n:\begin{cases} W(R)\to W(R) \\ (x_0,\dots,x_i,\dots)\mapsto (0,x_0,\dots,x_i,\dots) \end{cases}

denote the Verschiebung morphism? which is a morphism of the underlying additive groups. Let pp be a prime number? and let

F:W(R)W(R)F:W(R)\to W(R)

denote the Frobenius morphism?. Then Frobenius, Verschiebung, and the Witt-polynomial morphism satisfy the ‘’pp-adic Witt-Frobenius identities’’:

w n(F(x))=w n+1(x)n0w_n(F(x))=w_{n+1}(x)\; n\ge 0
w n(V(x))=w n1(x)n>0w_n(V(x))=w_{n-1}(x)\; n\gt 0
w 0(V(x))=0w_0(V(x))=0
FV=pFV=p
VF(xy)=xV(y)VF(xy)=xV(y)

References

  • T. Zink, the display of a formal p-divisible group, to appear in Asterisque, pdf

  • T. Zink, Windows for displays of p-divisible groups. in:Moduli of Abelian Varieties, Progress in Mathematics 195, Birkhäuser 2001, pdf

Revision on June 4, 2012 at 13:18:36 by Stephan Alexander Spahn?. See the history of this page for a list of all contributions to it.