Showing changes from revision #4 to #5:
Added | Removed | Changed
Recall that is the terminal object of .
is copowered (= tensored)? over . We define the constant -scheme on a set by
For a scheme we compute and see that there is an adjunction
This is just the constant-sheaf-global-section adjunction.
An étale -scheme is defined to be a directed colimit of -spectra of finite separable field-extensions of .
For an étal group scheme we have
An (see affine alsocoalgebras, corings and birings in the theory of group shemes -scheme ) is a representable object in .
We An obtain affine a group law -scheme induced by if is a representable object in satisfies the dual axioms of a group object.
We obtain a group law induced by if satisfies the dual axioms of a group object. We denote the structure maps called comultiplication, counit, and converse by
The additive group
The multiplicative group
The kernels of group homomorphisms. In particular the kernel .
A group scheme is called multiplicative group scheme if the following equivalent conditions are satisfied:
is diagonalizable.
is diagonalizable for a field .
is the Cartier dual of an étale -group.
is an étale -formal group.
(If , is an epimorphism
(If , is an isomorphism
Let dnote a constant group scheme, let be an étale group scheme. Then we have the following cartier duals:
is diagonalizable.