Spahn
examples of (group) schemes (Rev #5)
Contents
constant (group) scheme
Recall that Spec k k = * Spec_k k=* is the terminal object of k . Sch k.Sch .
k . Sch k.Sch is copowered (= tensored)? over Set Set . We define the constant k k -scheme on a set E E by
E k : = E ⊗ * = ∐ e ∈ E * E_k:=E\otimes *=\coprod_{e\in E}*
For a scheme X X we compute M k ( E k , E ) = Set ( * , X ) E = X ( k ) E = Set ( E , X ( k ) ) M_k(E_k,E)=Set(*,X)^E=X(k)^E=Set(E,X(k)) and see that there is an adjunction
( ( − ) k ⊣ ( − ) ( k ) ) : k . Sch → Set ((-)_k\dashv (-)(k)):k.Sch\to Set
This is just the constant-sheaf-global-section adjunction .
étale (group) scheme
An étale k k -scheme is defined to be a directed colimit of k k -spectra Spec k k ′ Spec_k k^\prime of finite separable field-extensions k ′ k^\prime of k k .
For an étal group scheme X = colim k ′ ∈ T Spec k k ′ X=colim_{k^\prime \in T} Spec_k k^\prime we have
X ⊗ k k sep ≃ ( colim k ′ ∈ T Spec k k ′ ) ⊗ k k sep ≃ colim k ′ ∈ T Spec k sep k ′ ≃ colim k ′ ∈ T * X\otimes_k k_sep\simeq(colim_{k^\prime \in T}Spec_k k^\prime)\otimes_k k_sep\simeq colim_{k^\prime \in T} Spec_{k_sep} k^\prime\simeq colim_{k^\prime \in T} *
affine (group) scheme
(see also coalgebras, corings and birings in the theory of group shemes )
An affine k k -scheme G : = Spec k A G:=Spec_k A is a representable object in k . Fun k.Fun .
We obtain a group law G × G → G G\times G\to G induced by A A if A A satisfies the dual axioms of a group object . We denote the structure maps called comultiplication, counit, and converse by
Δ : A → A ⊗ A \Delta:A\to A\otimes A
ϵ : A → * \epsilon: A\to *
σ : A → A \sigma:A\to A
Examples
The additive group α k \alpha_k
The multiplicative group μ k \mu_k
The kernels of group homomorphisms. In particular the kernel ker ( − ) n : μ k → μ k ker\, (-)^n:\mu_k\to \mu_k .
Mapping spaces
local (=connected) group scheme
multiplicative group scheme
Definition and Remmark
A group scheme is called multiplicative group scheme if the following equivalent conditions are satisfied:
G ⊗ k k s G\otimes_k k_s is diagonalizable .
G ⊗ k K G\otimes_k K is diagonalizable for a field K ∈ M k K\in M_k .
G G is the Cartier dual of an étale k k -group.
D ^ ( G ) \hat D(G) is an étale k k -formal group.
Gr k ( G , α k ) = 0 Gr_k(G,\alpha_k)=0
(If p ≠ 0 ) p\neq 0) , V G V_G is an epimorphism
(If p ≠ 0 ) p\neq 0) , V G V_G is an isomorphism
diagonalizable group scheme
unipotent group scheme
p p -divisible group scheme
Revision on July 20, 2012 at 13:33:46 by
Stephan Alexander Spahn? .
See the history of this page for a list of all contributions to it.