Showing changes from revision #5 to #6:
Added | Removed | Changed
Let be a space (an object of a category of spaces), let be the category of sheaves on the frame of opens on , let denote the wide subcategory of with only étale morphisms. Then there is an adjoint equivalence
where
sends an étale morphism to the sheaf of local sections of .
sends a sheaf on to its espace étale.
We wish to clarify in which sense also the - topos can be regarded as an -sheaftopos on .
We assume that is the admissible class defined by an infinitesimal modality on .
(1) A -structure on an -topos is called universal if for every -topos composition with induces an equivalence of -categories if
(2) In this case we say exhibits as classifying -topos for -structures on .
, , and are -structured -toposes.
The classifying topos for -structures is and the -toposes in question are linked with by geometric morphisms. We obtain the required structures as the image of
respectively for and in place of “H/X”.
A -structured (∞,1)-topos is called locally representable (aka a -scheme) if
such that
the cover in that the canonical morphism (with the terminal object of ) is an effective epimorphism;
for every there exists an equivalence
of structured -toposes for some (in the (∞,1)-category of pro-objects in ). In other words is assumed to be locally equivalent to an absolute spectrum (aka affine scheme) of a pro object in .
A -structured (∞,1)-topos is called locally representable (aka a -scheme) if
such that
the cover in that the canonical morphism (with the terminal object of ) is an effective epimorphism;
for every there exists an equivalence
of structured -toposes for some (in the (∞,1)-category of pro-objects in ). In other words is assumed to be locally equivalent to an absolute spectrum (aka affine scheme) of a pro object in .