Spahn sheaf on a sheaf (Rev #9, changes)

Showing changes from revision #8 to #9: Added | Removed | Changed

Motivation

Let XHX\in H be a space (an object of a category HH of spaces), let Sh(X)Sh(X) be the category of sheaves on the frame of opens on XX, let (H/X) et(H/X)^{et} denote the wide subcategory of H/XH/X with only étale morphisms. Then there is an adjoint equivalence

(LΓ):(H/X) etΓSh(X)(L\dashv \Gamma):(H/X)^{et}\stackrel{\Gamma}{\to}Sh(X)

where

  • Γ\Gamma sends an étale morphism f:UXf:U\to X to the sheaf of local sections of ff.

  • LL sends a sheaf on XX to its espace étale.

Très petit topos

We wish to clarify in which sense also the (,1)(\infty,1)- topos (H/X) fet(H/X)^{fet} can be regarded as an (,1)(\infty,1)-sheaftopos on XX.

We assume that fetfet is the admissible class defined by an infinitesimal modality \Box on HH.

Definition (universal GG-structure, classifying topos)

(1) A GG-structure OO on an (,1)(\infty,1)-topos is called universal if for every (,1)(\infty,1)-topos XX composition with OO induces an equivalence of (,1)(\infty,1)-categories if

Fun *(K,T)Str G(T)Fun^*(K,T)\to Str_G(T)

(2) where In this case we sayOFun *(K,T) O Fun^*(K,T) exhibits denotes the geometric morphisms K f K f as with classifying inverse image(f *:,K1)T (\infty,1) f^*:K\to T-topos for GG-structures on XX.

(2) In this case we say OO exhibits KK as classifying (,1)(\infty,1)-topos for GG-structures on XX.

Remark

HH, H/XH/X, and (H/X) fet(H/X)^fet are (H/X) fet(H/X)^{fet}-structured (,1)(\infty,1)-toposes.

Proof

The classifying topos for (G/X) fet(G/X)^{fet}-structures is HH and the (,1)(\infty,1)-toposes in question are linked with HH by geometric morphisms. We obtain the required structures as the image of

Fun *(H,H/X)Str (H/X) fet(H/X)Fun^*(H,H/X)\to Str_{(H/X)^{fet}}(H/X)

respectively for HH and (H/X) fet(H/X)^{fet} in place of “H/X”.

Local representability of the très petit topos

Definition (pro objects in (H/X) fet(H/X)^{fet})

Let CC be an (,1)(\infty,1)-category. We have Ind(C op)Pro(C) opInd(C^{op})\simeq Pro(C)^{op}. A pro object in in CC is a formal limit of a cofiltered diagram in CC. A cofiltered diagram is defined to be a finite diagram FF having a cone (i.e. a family of natural transformation κ cF\kappa_c\to F for all cCc\in C ). , whereκ c\kappa_c denotes the constant functor having value cc). So we have

Pro(C)={F:DC|Disfinite,cofiltered}Pro(C)=\{F:D\to C | D\,is\,finite,\,cofiltered\}

and the hom sets are

Pro(C)(F,G)=lim eEcolim dDC(F(d),G(e))Pro(C)(F,G)=lim_{e\in E}colim_{d\in D}C(F(d),G(e))
Definition

A GG-structured (∞,1)-topos (X,O G,X)(X,O_{G,X}) is called locally representable (aka a GG-scheme) if

  • there exists a collection {U iX}\{U_i \in X\}

such that

  • the {U i}\{U_i\} cover XX in that the canonical morphism iU i*\coprod_i U_i \to {*} (with *{*} the terminal object of XX) is an effective epimorphism;

  • for every U iU_i there exists an equivalence

    (X/U i,O G,X| U i)Spec GA i (X/{U_i}, O_{G,X}|_{U_i}) \simeq Spec_{G} A_i

    of structured (,1)(\infty,1)-toposes for some A iPro(G)A_i \in Pro(G) (in the (∞,1)-category of pro-objects in GG). In other words (X,O G,X)(X,O_{G,X}) is assumed to be locally equivalent to an absolute spectrum (aka affine scheme) of a pro object in GG.

Remark

((H/X) fet,id (H/X) fet)((H/X)^{fet},id_{(H/X)^{fet}}) is locally representable.

Proof

The terminal object in (H/X) fet(H/X)^{fet} is id Xid_X the identity on XX. The collection of all formally étale effective epimorphisms (in HH) with codomain XX covers XX and hence the cover id Xid_X in the slice. Since our chosen (H/X) fet(H/X)^{fet}-structure is the identity the cover is preserved by it.

Let Uid XU\to id_X be an element of the cover; i.e. an formally étale effective epimorphism UXU\to X.

Now we consider ((H/X) fet/U,id (H/X) fet/U) (H/X)^{fet}/U,id_{(H/X)^{fet}/U}) ((H/X)^{fet}/U,id_{(H/X)^{fet}/U}):

Objects of (H/X) fet/U(H/X)^{fet}/U are cocones A X U \array{A&\to &X\\\searrow &&\swarrow\\&U&} where AXA\to X is formally étale. Morphisms are pyramids with three faces and tip UU.

Revision on December 16, 2012 at 17:08:00 by Stephan Alexander Spahn?. See the history of this page for a list of all contributions to it.