nLab Arakelov geometry

Contents

Contents

Motivation

The aim of Arakelov geometry is to extend intersection theory to the case of algebraic curves over Spec()Spec(\mathbb{Z}), hence in arithmetic geometry.

Arakelov complemented the algebraic geometry at finite primes with a holomorphic piece at a place at infinity. Then using complex analytic geometry and Green's functions he defined the intersection numbers using the complementary piece at infinity.

Definitions

… e.g. (Durov 07)

Properties

Arithmetic Riemann-Roch theorem

References

Introductions and surveys

  • Wikipedia: Arakelov theory

  • Serge Lang, Introduction to Arakelov theory Springer-Verlag, New York, 1988.

  • Christophe Soulé, D. Abramovich, , J.-F. Burnol, J. Kramer, Lectures on Arakelov Geometry, Cambridge University Press 1991

  • Robin de Jong, Explicit Arakelov geometry, PhD thesis 2004 (pdf)

  • Alberto Camara, Notes on Arakelov theory, 2011 (pdf)

Original articles

The theory originates in

  • Suren Arakelov, Intersection theory of divisors on an arithmetic surface, Math. USSR Izv. 8 (6): 1167–1180, 1974, doi; Theory of intersections on an arithmetic surface, Proc. ICM Vancouver 1975, vol. 1, 405–408, Amer. Math. Soc. 1975, djvu, pdf

After Arakelov there were main improvements by Faltings and Gillet and Soulé.

  • Gerd Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), no. 2, 387–424, MR86e:14009, doi; Arakelov’s theorem for abelian varieties, Invent. Math. 73 (1983), no. 3, 337–347, MR85m:14061, doi

The arithmetic Riemann-Roch theorem is due to

  • Henri Gillet, Christophe Soulé, An arithmetic Riemann–Roch Theorem, Invent. Math. 110: 473–543, 1992, doi

  • Shou-Wu Zhang, Small points and Arakelov theory, Proc. ICM 1998, vol. 2, djvu, pdf

In a recent Bonn thesis under Faltings’ supervision,

a completely algebraic replacement (using generalized schemes whose local models are spectra of commutative algebraic monads) for the original mixed approach is proposed; it is not known if that approach can be closely and precisely compared with the traditional.

See also

Relation to AdS3/CFT2

Relation of AdS3/CFT2 to hyperbolic geometry and Arakelov geometry of algebraic curves:

Last revised on November 13, 2023 at 11:55:38. See the history of this page for a list of all contributions to it.