nLab
B1-homotopy theory

Context

Homotopy theory

Analytic geometry

Contents

Idea

𝔹 1\mathbb{B}^1-homotopy theory is the study of the localization of an (∞,1)-sheaf (∞,1)-category over a site of analytic spaces at morphisms 𝔹 1*\mathbb{B}^1 \to *, where 𝔹 1Spm(k{t})\mathbb{B}^1 \simeq Spm(k\{t\}) is the Tate ball.

References

  • Joseph Ayoub, Motives of rigid varieties and the motivic nearby functor, talk notes 2006 (pdf)

  • Joseph Ayoub, Motifs des variétés analytiques rigides (pdf)

  • Joseph Ayoub, Floian Ivorra and Julien Sebag, Motives of rigid analytic tubes and nearby motivic sheaves (pdf)

Revised on June 11, 2014 07:12:11 by Urs Schreiber (89.204.138.37)