higher geometry / derived geometry
Ingredients
Concepts
geometric little (∞,1)-toposes
geometric big (∞,1)-toposes
Constructions
Examples
derived smooth geometry
Theorems
Under mild conditions, a given site of formal duals of algebras over an algebraic theory admits Isbell duality exhibited by an adjunction
as described at function algebras on ∞-stacks Here is an -algebra of functions on .
This entry describes for certain algebraic stacks an analog of this situation where the 1-algebras are replaced by 2-algebras in the form of commutative algebra objects in the 2-category of abelian categories: abelian symmetric monoidal categories, and where the function algebras are replaced with category of quasicoherent sheaves.
The replacement of the 1-algebra by the 2-algebra is the starting point for what is called derived noncommutative geometry.
All toposes that we consider are Grothendieck toposes. A ringed topos is a topos equipped with a ring object – a sheaf of rings – called the structure sheaf – on whatever site is the category of sheaves on. We write for the category of modules in (sheaves of modules) over .
We write for the category of ringed toposes.
For a scheme or more generally an algebraic stack, write for its little etale topos.
A ringed topos is a locally ringed topos with respect to the étale topology if for every object and every family of étale morphisms such that
is faithfully flat, there exists morphisms in and factorizations such that
is an epimorphism.
If has enough points then is local for the étale topology precisely if the stalk at every point is a strictly Henselian local ring.
This is (Lurie, remark 4.4).
An abelian tensor category (for the purposes of the present discusission) is a symmetric monoidal category such that
is an abelian category;
for every the functor is additive and right-exact: it commutes with finite colimits.
A complete abelian tensor category is an abelian tensor category such that
it satisfies the axiom AB5 at additive and abelian categories;
commutes with all small colimits.
(equivalently, we have a closed monoidal category).
An abelian tensor category is called tame if for any short exact sequence
with a flat object (such that is an exact functor) and any also the induced sequence
is exact.
This appears as (Lurie, def. 5.2) together with the paragraph below remark 5.3.
For two complete abelian tensor categories write
for the core of the subcategory of the functor category on those functors that
commute with all small colimits (which implies they are additive and right exact)
preserve flat objects and short exact sequences whose last object is flat.
Write
for the (strict) (2,1)-category of tame complete abelian tensor categories with hom-groupoids given by this .
This appears as (Lurie, def 5.9) together with the following remarks.
For a ring, write for its abelian symmetric monoidal category of modules
Let be a ringed topos. Then
(the category of sheaves of -modules) is a tame complete abelian tensor category.
This is (Lurie, example 5.7).
For an algebraic stack, write
for its category quasicoherent sheaves.
This is a complete abelian tensor category
If is a Noetherian geometric stack, then is the category of ind-objects of its full subcategory of coherent sheaves
This appears as (Lurie, lemma 3.9).
A geometric stack is
an algebraic stack over
that is quasi-compact, in particular there is an epimorphism ;
with affine and representable diagonal .
A quasicompact separated scheme is a geometric stack.
The classifying stack of a smooth affine group scheme is a geometric stack.
The geometricity condition on an algebraic stack implies that there are “enough” quasicoherent sheaves on it, as formalized by the following statement.
If is a geometric stack then the bounded-below derived category of quasicoherent sheaves on is naturally equivalent to the full subcategory of the left-bounded derived category of smooth-etale -modules whose chain cohomology sheaves are quasicoherent.
This is (Lurie, theorem 3.8).
Let be a geometric stack.
Then for every ring there is an equivalence of categories
hence (by the 2-Yoneda lemma)
More generally, for any etale-locally ringed topos, we have
This is (Lurie, theorem 5.11) in view of (Lurie, remark 4.5).
It follows that forming quasicoherent sheaves constitutes a full and faithful (2,1)-functor
from geometric stacks to tame complete abelian tensor categories.
This statement justifies thinking of as being the “2-algebra” of functions on . This perspective is the basis for derived noncommutative geometry.
The above material is taken from
The generalization to geometric stacks in the context of Spectral Schemes is in
Related discussion is in
Last revised on October 9, 2014 at 21:03:51. See the history of this page for a list of all contributions to it.