This entry is about the book:
Francis Borceux, Dominique Bourn,
Mal’cev, protomodular, homological and semi-abelian categories
Mathematics and Its Applications 566,
Kluwer 2004
on nonabelian homological algebra, such as its diagram chasing lemmas, in Mal'cev categories, protomodular categories, semi-abelian categories and homological categories.
From the introduction:
The most striking successes of category theory, as far as clarification of mathematical situations is concerned, are probably the theory of abelian categories and the theory of toposes. This is not too amazing since both theories are closely related to the development of sheaf theory, a context in which it is desirable to get rid of the usual notion of element.
But up to recently, category theory did not provide any comparable insight in General Algebra, a domain in which element-based mathematics remains the slogan. In particular, category theory could not provide a structural tool able to grasp, even in the most representative category of classical algebra - namely, the category of groups - the deep essence of the notion of normal subobject: namely, an equivalence class for a congruence and not just the kernel of a morphism.
And category theory could not grasp either the conceptual foundations of the homological lemmas: the Nine Lemma, the Snake Lemma, which remain valid and strongly meaningful in the category of groups, even if this category does not belong to the abelian setting in which these lemmas are generally proved in a significant categorical way.
Of course, there have been since a long time attempts to provide an axiomatic context in which to get the isomorphism theorems, the decomposition theorems or the previous homological lemmas for the varieties of Universal Algebra: Baer (1947, [6]), Goldie (1952, [48]), Atiyah (1956, [5]), Higgins (1956, [54]), Kurosh (1959, [73]), Hilton-Ledermann (1960, [55]), Eckmann-Hilton (1962, [40]), Tsalenko (1967, [92]), but also Hofmannn (1960, [56]), Fröhlich (1961, [46]), Huq (1968, [57]), Gerstenhaber (1970, [47]), Burgin (1970, [34]), Orzech (1972, [83]).
These first attempts, despite their interest, consist generally in a long list of axioms whose independence is certainly not clear. But more importantly, these axioms look desperately heavy and complicated in comparison with the elegance of the characterization of abelian models. We refer the reader to the introduction of the paper by Janelidze-Márki-Tholen (2002, [60]) for a reliable historical approach to this topic. … Establishing an organic and synthetic connection between all these attempts the ambition of this book. To achieve this, an additional ingredient was necessary, of purely categorical nature: the fibration of points. This fibration allows representing every category as a fibration whose fibres are pointed categories, i.e. categories with a zero object (see Bourn, 1996, [17]). This book will give evidence that the fibration of points emphasizes the importance of split epimorphisms in the context of algebraic theories, but also that this fibration of points has a very strong classification power: see on page 466 the table summarizing these classification properties. …
(with links to the related lab entries)
Metatheorems
Appendix
Classification table of fibrations of points
Bibliography
Index of symbols
Index of definitions
P. Agliano, A. Ursini, Ideals and other generalizations of congruence classes, Journal of Australian Math. Soc., Ser. A 53 (1992) 103-115
P. Agliano, A. Ursini, On subtractive varieties II: general properties, Algebra Universalis 36 (1996) 222-259
P. Agliano, A. Ursini, On subtractive varieties III: from ideals of congruences, Algebra Universalis 37 (1997) 296-333
P. Agliano, A. Ursini, On subtractive varieties IV: definability of principal ideals, Algebra Universalis 38 (1997) 355–389
M. Atiyah, On the Krull-Schmidt Theorem with applications to sheaves, Bull. Soc. Math. France 84 (1956) 307-317
R. Baer, Direct decomposition, Trans. Amer. Math. Soc. 62 (1947) 62-98
M. Barr, Exact categories, Springer Lect. Notes in Math. 236 (1971) 1-120
M. Barr, J. Beck, Hornology and standard constructions, Springer Lec. Notes in Math. 80 (1969) 245-335
J. Bénabou, Introduction to bicategories, Springer Lect. Notes in Math. 47 (1967) 1-77
J. Bénabou, Fibered categories and the foundations of naive category theory, J. of Symbolic Logic 50 (1985) 10
F. Borceux, Handbook of Categorical Algebra, Cambridge Univ. Press, vol. 1-3 (1994)
F. Borceux, A survey of semi-abelian categories, in: Galois theory, Hopf algebras, and semiabelian categories, 27–60, Fields Inst. Commun., 43, Amer. Math. Soc., Providence, RI, 2004, MR2005b:18015
F. Borceux, M. M. Clementino, Topological semi-abelian algebras, Adv. Math. 190 (2005), no. 2, 425–453, doi, MR2005b:18015
F. Borceux, M. Grandis, Jordan-Hölder, modularity and distributivity in non-commutative algebra, J. Pure Appl. Algebra 208 (2007), no. 2, 665–689, doi, MR2007k:18021
D. Bourn, The shift functor and the comprehensive factorization for internal groupoids, Cahiers Top. Géométrie Différentielle Catégoriques 28 (1987) 197-226
D. Bourn, Normalization equivalence, kernel equivalence and alefine categories, Springer Lect. Notes in Math. 1448 Como (1991) 43-62
D. Bourn, Mal’cev categories and fibrations of pointed objects, Appl. Categorical Structures 4 (1996) 302-327
D. Bourn, Baer sums and fibered aspects of Mal’cev operations, Cahiers Top. Géom. Diff. Catégoriques 40 (1999) 297-316
D. Bourn, Normal subobjects and abelian objects in protomodular categories. J. Algebra 228 (2000) 143-164
D. Bourn, Normal functors and strong protomodularity, Theory Appl. Cat- egories 7 (2000) 206-218
D. Bourn, 3 x 3 lemma and protomodularity, J. Algebra 236 (2001) 778-795
D. Bourn, A categorical genealogy for the congruence distributive property, Theory Appl. Categories 8 (2001) 391-407
D. Bourn, Intrinsic centrality and associated classifying properties, J. of Algebra 256 (2002) 126-145
D. Bourn, Aspherical abelian groupoids and their directions, J. Pure Appl. Alg. 168 (2002) 133 146
D Bourn, The denormalized 3 x 3 lemma, J. Pure Appl. Algebra 177 (2003) 113-129
D Bourn, Commutator theory in regular Mal’cev categories, Publications of the Fields Institute (to appear)
D Bourn, Protomodular aspect of the dual of a topos, Advances in Mathematics, Adv. Math. 187 (2004), no. 1, 240–255, doi, MR2006a:18003
D Bourn, Commutator theory in strongly semi-abelian categories, Preprint, Univ. du Littoral (2003), submitted for publication
D Bourn, M. Gran, Centrality and normality in protomodular categories, Theory Appl. Categories 9 (2002) 151-165
D Bourn, M. Gran, Central extensions in semi-abelian categories, J. Pure Appl. Alg. 175 (2002) 31-44
D. Bourn, M. Gran, Centrality and connectors in Maltsev categories, Algebra Universalis 48 (2002) 309-331
D. Bourn, G. Janelidze, Protomodularity, descent and semi-direct product, Theory Appl. Categories 4 (1998) 37-46
D. Bourn, G. Janelidze, Characterization of protomodular varieties of universal algebra, Theory Appl. Categories 11 (2003) 143-147
M.S. Burgin, Categories with involution and correspondences in -categories, Trans. Moscow Math. Soc. 22 (1970) 181-257
A. Carboni, Categories of affine spaces, J. Pure Appl. Alg. 61 (1989) 243-25O
A. Carboni, G. M. Kelly, M. C. Pedicchio, Some remarks on Mal’tsev and Goursat categories, Appl. Categorical Structures 1 (1993) 385-421
A. Carboni, J. Lambek, M. C. Pedicchio, Diagram chasing in Mal’cev categories, J. Pure Appl. Alg. 69 (1990) 271-284
A. Carboni, M. C. Pedicchio, N. Pirovano, Internal graphs and internal groupolds in Mal’cev categories, CMS Conference proceedings, Category Theory 1991 13 (1992) 97-109
Y. Diers, Categories of commutative algebras, Oxford University Press (1992)
B. Eckmann, P.J. Hilton, Group-like structures in general categories Math. Ann. 145 (1962) 227-255
T. Everaert, T. Van der Linden, Baer invariants in semi-abelian categories H: homologs, preprint (2003)
T.H. Fay, On categorical conditions for congruences to commute, Algebra Univ. 8 (1978) 173-179
R. Freese, R. McKenzie, Commutator theory for congruence modular varieties, Load. Math. Soc. Lect. Notes Series 125 (1987)
P. Freyd, Abelian categories, Harper and Row (1964)
P. Freyd, A. Scedrov, Categories, allegories, North Holland (1990)
A. Fröhlich, Non-abelian homological algebra I, Derived functors and satellites, Proc. London Math. Soc. 11 (1961) 239-275
M. Gerstenhaber, A categorical setting for the Baer extension theory, Proc. in Symposia in Pure Mathematics 17 (1970) 50-64
A. W. Goldie, The Jordan-Hölder theorem for general abstract algebras, Proc. London Math. Math. Soc. 2 (1950) 107-113
M. Gran, Internal categories in Mal’cev categories, J. Pure Appl. Alg. 143 (1999) 221-229
M. Gran, Central extensions and internal groupolds in Maltsev categories, J. Pure Appl. Alg. 155 (2001) 139-166
M. Gran, Seni-abelian exact completions, Hornology, Homotopy and Appl. 4(1) (2002) 175-189
H. P. Gumm, Geometrical methods in congruence modular varieties, Mere. Amer. Math. Soc. 45 (1983)
J. Hagemann, C. Herrmann, A concrete ideal multiplication .for al- gebraic systems and its relation to congruence distributivity, Arch. Math. 32 (1979) 234-245
P. J. Higgins, Groups with multiple operators, Proc. London Math. Soc. 6 (1956) 366-416
P. J. Hilton and W. Ledermann, On the Jordan-Hölder theorem in homological monoids, Proc. London Math. Soc. 10 (1960) 321-334
F. Hofmann, Uber cine die Kategorie der Gruppen umfassende Kategorie, Sitzunss. Bayerische Akad. Wissensch. Math. Naturw. Klasse (1960) 163-204
S.A. Huq, Commutator, nilpotency and solvability in categories, Quart. J. Math. Oxford (2)19 (1968) 363-389
M. Huek, Productivity of properties of topological spaces, Topology Appl. 44 (1992) 189-196
G. Janelidze, Internal categories in Mal’cev varieties, Preprint York Univ. in Toronto (1990)
G. Janelidze, L. Márki, W. Tholen, Semi-abelian categories, J. Pure Appl. Alg. 168 (2002) 367-386
G. Janelidze, M. C. Pedicchio, Pseudogroupoids and commutator theory, Theory Appl. Categories 8 (2001) 405-456
P.T. Johnstone, Topos theory, London Math. Soc. Monographs 10, Aca- demic Press (1977)
P.T. Johnstone, Stone spaces, Cambridge Univ. Press (1982)
P. T. Johnstone, Affine categories and naturally Mal’cev categories, J. Pure Appl. Alg. 61 (1989) 251-256
P. T. Johnstone, The closed subgroup theorem for localic herds and pre- groupolds, J. Pure Appl. Alg. 70 (1991) 97-106
P. T. Johnstone, Sketches of an Elephant: A Topos Theory Compendium, Vol. 1, 2, Oxford University Press, 2002
Peter Johnstone, A note on the semiabelian variety of Heyting semilattices, in: Galois theory, Hopf algebras, and semiabelian categories, 317–318, Fields Inst. Commun. 43, Amer. Math. Soc. 2004, MR2006a:18003
P. T. Johnstone and M. C. Pedicchio, Remarks on continuous Mal’cev algebras, Rend. Univ. Trieste (1995) 277-297
B. Jónsson and A. Tarski, Direct decompositions of finite algebraic systems, Notre Dame Mathematical Lectures, Notre Dame, Indiana (1947)
A. Kock, The algebraic theory of moving frames, Cahiers Top. Géom. Diff. Catégoriques 23 (1982) 347-362
A. Kock, Generalized fibre bundles, Springer Lect. Notes in Math. 1348 (1988) 194-207
A. Kock, Fibre bundle in general categories, J. Pure Appl. Alg. 56 (1989) 233–245
A. G. Kurosh, Direct decompositions in algebraic categories (Russian), Trudy Mosk. Mat. Obščestva. 8 (1959) 391-412
F.W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963) 869-873
F.W. Lawvere, R. Rosebrugh, Sets for mathematics, Cambridge University Press (2002)
F.W. Lawvere, S.H. Schanuel, Conceptual Mathematics, Buffalo Workshop preprint (1994)
F.E.J. Linton, An outline of functorial semantics, Spinger Lect. Notes Math. 80 (1969) 7–52
F.E.J. Linton, Applied functorial semantics, Springer LNM 80 (1969) 53-74
S. Mac Lane, Homology, Springer Verlag (1963)
S. Mac Lane, Categories for the working mathematician, 2nd edition, Springer Verlag (1998)
S. Mac Lane, I. Moerdijk, Sheaves in Geometry and Logic, Universitext, Springer Verlag (1992)
A. I. Mal’cev, On the general theory of algebraic systems, Mat. Sbornik N. S. 35 (1954) 3-20
G. Orzech, Obstruction theory in algebraic categories, I and H, J. Pure Appl. Alg. 2 (1972) 287-340
M. C. Pedicchio, Maltsev categories and Maltsev operations, J. Pure Appl. Alg. 98 (1995) 67-71
M. C. Pedicchio, A categorical approach to commutator theory, J. Algebra 17’7’ (1995) 647-657
M. C. Pedicchio, Arithmetical categories and commutator theory, Appl. Categorical Structures 4 (1996) 297-305
R.S. Pierce, Modules over commutativc regular rings, Mere. Am. Math. Soc. 70 (1967)
A. F. Pixley, Distributivity and permutability of congruences in equational classes of algebras, Proc. Amer. Math. Soc. 14 (1963) 105-109
J. D. H. Smith, Mal’cev varieties, Springer Lect. Notes in Math. 554 (1976)
J. D. H. Smith, Centrality, Abstract of the Amer. Math. Soc. I (1980) 774-821
J. D. H. Smith, On the characterization of Maltsev and Jdnsson-Tarski algebras, Preprint Iowa State Univ. (2001)
M. S. Tsalenko, Correspondences over a quasi-exact category (Russian), Mat. Sbornik 73 (1967) 564-584
A. Ursini, On subtractive varieties, I, Algebra Universalis 31 (1994) 204-222
A. Ursini, On subtractive varieties, V: congruence modularity and commutators, Algebra Universalis 43 (2000) 51-78
V.V. Uspenskii, The Mal’tsev operation on countably compact spaces, Comment. mat. Univ. Carolinæ 30 (1989) 395-402
Last revised on September 22, 2021 at 09:39:37. See the history of this page for a list of all contributions to it.