On equivariant de Rham cohomology
On non-commutative geometry-deformation of the self-dual higher gauge theory as it appears on the M5-brane worldvolume, and its S-duality:
Peter Bouwknegt, Jarah Evslin, Varghese Mathai, T-Duality: Topology Change from H-flux, Commun. Math. Phys. 249:383-415, 2004 (hep-th/0306062)
Peter Bouwknegt, Keith Hannabus, Varghese Mathai, T-duality for principal torus bundles, JHEP 0403 (2004) 018 (hep-th/0312284)
Varghese Mathai, Jonathan Rosenberg, T-Duality for Torus Bundles with H-Fluxes via Noncommutative Topology (arXiv:hep-th/0401168)
On the fractional quantum Hall effect via noncommutative geometry:
On analytic torsion and twisted de Rham cohomology:
On a twisted equivariant version of the Bismut-Chern character:
reviewed in:
On T-duality in the K-theory classification of topological phases of matter, related to the Fourier transform between crystals and their Brillouin torus:
Varghese Mathai, Guo Chuan Thiang, T-Duality of Topological Insulators, J.Phys.A: Math. Theor. 48 (2015) 42FT02 [doi:10.1088/1751-8113/48/42/42FT02]
Varghese Mathai, Guo Chuan Thiang, T-duality simplifies bulk-boundary correspondence: some higher dimensional cases, Annales Henri Poincaré 17 12 (2016) 3399-3424 [doi:10.1007/s00023-016-0505-6, arXiv:1506.04492]
Keith C. Hannabuss, Varghese Mathai, Guo Chuan Thiang, T-duality trivializes bulk-boundary correspondence: the parametrised case, Adv. Theor. Math. Phys. 20 (2016) 1193-1226 [doi:10.4310/ATMP.2016.v20.n5.a8, arXiv:1510.04785]
Keith C. Hannabuss, Varghese Mathai, Guo Chuan Thiang, T-duality simplifies bulk-boundary correspondence: the noncommutative case, Lett. Math. Phys. 108 5 (2018) 1163-1201 [doi:10.1007/s11005-017-1028-x, arXiv:1603.00116]
Aspects of the classification of semi-metals seen in ordinary cohomology:
Varghese Mathai, Guo Chuan Thiang, Global topology of Weyl semimetals and Fermi arcs, J. Phys. A: Math. Theor. 50 (2017) 11LT01 (arXiv:1607.02242, doi:10.1088/1751-8121/aa59b2)
Varghese Mathai, Guo Chuan Thiang, Differential Topology of Semimetals, Commun. Math. Phys. 355 (2017) 561–602, (arXiv:1611.08961, doi:10.1007/s00220-017-2965-z)
On the Witten genus:
On bundle gerbe modules with higher G-structures (including String structure, etc.) and the corresponding twisted Chern character:
Last revised on August 17, 2024 at 18:00:44. See the history of this page for a list of all contributions to it.