In 11-dimensional supergravity the brane electrically charged under the supergravity C-field is the M2-brane/membrane. The dual under electric-magnetic duality is the M5-brane.


As a Green-Schwarz type sigma-model

As a Green-Schwarz sigma-model: BLNPST 97

As a black pp-brane

As a black brane solution of 11-dimensional supergravity the M5-brane is given (Gueven 92) by the spacetime 5,1×( 5{0})\mathbb{R}^{5,1} \times (\mathbb{R}^5-\{0\}) with pseudo-Riemannian metric given by

g=H 1/3g 5,1H 2/3g 5{0} g = H^{-1/3} g_{\mathbb{R}^{5,1}} \oplus H^{2/3} g_{\mathbb{R}^5-\{0\}}

for H=1+1rH = 1 + \frac{1}{r} and rr the distance in 5\mathbb{R}^5 from the origin, and with field strength of the supergravity C-field being

F= 5dH. F = \star_{\mathbb{R}^5} \mathbf{d}H \,.

This is a 1/21/2-BPS state of 11-dimensional supergravity.

The near horizon geometry of this spacetime is AdS7×\timesS4. For more on this see at AdS-CFT.

More generally for lower BPS black M5-branes, the near horizon geometry is AdS 7×S 4/GAdS_7 \times S^4/G, where GG is a finite subgroup of SU(2) (ADE subgroup) acting by left multiplication on the quaternions \mathbb{H} in the canonical way, under the identitfication S 4S( 5)S()S^4 \simeq S(\mathbb{R}^5) \simeq S(\mathbb{R}\oplus \mathbb{H}) (MFF 12, section 8.3).

1/2 BPS black branes in supergravity: D-branes, F1-brane, NS5-brane, M2-brane, M5-brane

(table taken from Blumenhagen-Lüst-Theisen “Basic concepts of string theory”)


Worldvolume theory

the worldvolume theory of the M5-brane is the 6d (2,0)-superconformal QFT.

This worldvolume theory involves self-dual higher gauge theory of the nonabelian kind (Witten07, Witten09): the fields are supposed to be connections on a 2-bundle(\sim gerbe), presumably with structure 2-group the automorphism 2-group AUT(G)AUT(G) of some Lie group GG.

For instance in the proposal of (SSW11) one sees in equation (2.1) almost the data of an 𝔞𝔲𝔱(𝔤)\mathfrak{aut}(\mathfrak{g})-Lie 2-algebra valued forms.

Branes inside the M5

The M5-brane admits two solitonic excitations (pp-branes within branes)

Dimensional reduction

On dimensional reduction of 11-dimensional supergravity on a circle the M5-brane turns into the NS5-brane and the D4-brane of type II string theory.

The compactification of the 5-brane on a Riemann surface yields as worldvolume theory N=2 D=4 super Yang-Mills theory. See at N=2 D=4 SYM – Construction by compactification of 5-branes.

Holographic dual

The AdS/CFT correspondence for the 5-brane is AdS 7/CFT 6AdS_7/CFT_6 and relates the 6d (2,0)-superconformal QFT to 7-dimensional supergravity obtained by reduction of 11-dimensional supergravity on o 4-sphere to an and asymptotically 7d anti de Sitter spacetime.

Conformal blocks and 7d Chern-Simons dual

The self-dual 2-connection-field (see there for more details) on the 6-dimensional worldvolume M5-brane is supposed to have a holographic description in terms of a 7-dimensional Chern-Simons theory (Witten 1996). We discuss the relevant “fractional” quadratic form on ordinary differential cohomology that defines the correct action functional.

Let G^\hat G be the circle 3-bundle with connection on a 7-dimensional manifold XX with boundary the M5-brane, thought of as the compactification of the supergravity C-field from 11-dimensional supergravity down to 7-dimensional supergravity.

As discussed there, the 7-dimensional Chern-Simons theory action functional on these 3-connections is

G^ 4exp(i XG^ 4G^ 4), \hat G_4 \mapsto \exp(i \int_X \hat G_4 \cup \hat G_4) \,,


The space of states of this 7d theory on the M5 worldvolume X\partial X would be the space of conformal blocks of the 6d (2,0)-supersymmetric QFT on the worldvolume.

Except, that it turns out that the first Chern class of the corresponding prequantum line bundle is twice that required from geometric quantization.

Therefore the above action functional is not yet the correct one, but only a fractional version of it is. However, the class G 4G 4G_4 \cup G_4 in integral cohomology has in general no reason to be divisible by 2.

This is related to the fact that as a quadratic form on the ordinary differential cohomology group H^ 4(X)\hat H^4(X), the above is not a quadratic refinement of

(G^,G^)exp(i XG^G^), (\hat G, \hat G') \mapsto \exp(i \int_X \hat G \cup \hat G') \,,

but of twice that. In (Witten 1996) it was argued, and later clarified in (Hopkins-Singer), that instead the action functional should be replaced by a proper quadratic refinement.

This is accomplished by shifting the center of the quadratic form by a lift λH 4(X,)\lambda \in H^4(X, \mathbb{Z}) of the degree-4 Wu class ν 4H 4(X,/2)\nu_4 \in H^4(X, \mathbb{Z}/2) from 0 to 12λ\frac{1}{2}\lambda.

(For that to make sense in integral cohomology, either the Wu class λ\lambda happens to be divisible by 2 on XX, or else one has to regard it itself as a twisted differential character of sorts, as explained in (Hopkins-Singer). For the moment we will assume that XX is such that λ\lambda is divisbible by 2.)

Since XX, being a spacetime for supergravity, admits (and is thought to be equipped with) a spin structure, by the discussion at Wu class it follows that λ\lambda is the first fractional Pontryagin class 12p 1\frac{1}{2}p_1

(12p 1mod2)=ν 4H 4(X,/2). (\frac{1}{2}p_1 \; mod \; 2) \; = \; \nu_4 \in H^4(X, \mathbb{Z}/2) \,.

By the very definition of Wu class, it follows that for any α^H^ 4(X)\hat \alpha \in \hat H^4(X) the combination

α^α^+α^λ^=Sq 4(α^)α^λ^=0mod2 \hat \alpha \cup \hat \alpha + \hat \alpha \cup \hat \lambda = Sq^4(\hat \alpha) - \hat \alpha \cup \hat \lambda \; =\; 0 \; mod \; 2

is divisible by 2.

Therefore define then the modified quadratic form

exp(iS λ):a^expi X12(a^a^+a^λ^) \exp(i S^\lambda) \; : \; \hat a \mapsto \exp i \int_X \frac{1}{2} \left( \hat a \cup \hat a + \hat a \cup \hat \mathbf{\lambda} \right)

(see differential string structure for the definition of the differential refinement λ^=12p^ 1\hat \mathbf{\lambda} = \frac{1}{2}\hat \mathbf{p}_1), where, note, we have included a global factor of 2, which is now possible due to the inclusion of the integral lift of the Wu class.

Notice that where the equations of motion of the original action functional are a^=0\hat a = 0, those of this shifted one are a^=12λ^\hat a = - \frac{1}{2}\hat \mathbf{\lambda}. One may therefor calls 12λ-\frac{1}{2}\lambda here a background charge for the 7-d Chern-Simons theory.

This is now indeed a quadratic refinement of the intersection pairing:

expi(S λ(a^+b^)S λ(a^)S λ(b^)+S λ(0))=expi X(a^b^). \exp i \left( S^\lambda\left(\hat a + \hat b \right) - S^\lambda\left( \hat a \right) - S^\lambda\left( \hat b \right) + S^\lambda\left( 0 \right) \right) = \exp i \int_X ( \hat a \cup \hat b ) \,.

To express the correct action functional for the 7d Chern-Simons theory it is useful to define the shifted supergravity C-field

a^:=G^ 412λ^, \hat a := \hat G_4 - \frac{1}{2}\hat \mathbf{\lambda} \,,

which the object whose equations of motion with respect to the 7d Chern-Simons theory are still a^=0\hat a = 0.

Then in terms of the original G^ 4\hat G_4 the action functional for the holographic dual 7d Chern-Simons theory reads

exp(iS(G^ 4))=exp(i X12(G^ 4G^ 4(12λ^) 2)). \exp(i S(\hat G_4)) = \exp(i \int_X \frac{1}{2} ( \hat G_4 \cup \hat G_4 - (\frac{1}{2}\hat \mathbf{\lambda})^2 ) ) \,.

This is the action as it appears in (Witten96, (3.6)).

In terms of twisted differential c-structures we may summarize the outcome of this reasoning as follows:

The divisibility of the action functional requires a 2(G 4a)2(G_4 - a)-twisted Wu structure in /2\mathbb{Z}/2-cohomology. Its lift to integral cohomology is the 2(G 4a)2(G_4 - a)-twisted differential string structure known as the “Witten quantization condition” on the supergravity C-field.

Restriction of the supergravity CC-field

We discuss the conditions on the restriction of the supergravity C-field on the ambient 11-dimensional supergravity spacetime to the M5-brane.

This is similar to the analogous situation in type II string theory. The the Freed-Witten anomaly cancellation condition demands that the restriction of the B-field H^ 3H^ 3(X)\hat H_3 \hat H^3(X) on spacetime XX to an oriented D-brane QXQ \hookrightarrow X has to trivialize, up to torsion, relative to the integral Stiefel-Whitney class W 3=β(w 2)W_3 = \beta(w_2), where β\beta is the Bockstein homomorphism induced from the short exact sequence 2 2\mathbb{Z} \stackrel{\cdot 2}{\to} \mathbb{Z} \to \mathbb{Z}_2:

H 3| QW 3, H_3|_Q \simeq W_3 \,,

thus defining a twisted spin^c-structure on the D-brane.

The analog of this for the M5-brane is discussed in (Witten00, section 5). There it is argued that there is a class

θH 3(Q,U(1)) \theta \in H^3(Q, U(1))

on the 5-brane such that under the Bockstein homomorphism β\beta' induced by the short exact sequence U(1)\mathbb{Z} \to \mathbb{R} \to U(1) we have for the supergravity C-field G^H^ 4(X)\hat G \in \hat H^4(X) the condition

G| Q=β(θ). G|_Q = \beta'(\theta) \,.

By the above quantization condition, this may also be thought of as witnessing a twisted string structure on the 5-brane (Sati).

This condition reduces to the above one for the BB-field under double dimensional reduction on the circle.

M5-brane charge

See at M5-brane charge

gauge theory induced via AdS-CFT correspondence

M-theory perspective via AdS7-CFT6F-theory perspective
11d supergravity/M-theory
\;\;\;\;\downarrow Kaluza-Klein compactification on S 4S^4compactificationon elliptic fibration followed by T-duality
7-dimensional supergravity
\;\;\;\;\downarrow topological sector
7-dimensional Chern-Simons theory
\;\;\;\;\downarrow AdS7-CFT6 holographic duality
6d (2,0)-superconformal QFT on the M5-brane with conformal invarianceM5-brane worldvolume theory
\;\;\;\; \downarrow KK-compactification on Riemann surfacedouble dimensional reduction on M-theory/F-theory elliptic fibration
N=2 D=4 super Yang-Mills theory with Montonen-Olive S-duality invariance; AGT correspondenceD3-brane worldvolume theory with type IIB S-duality
\;\;\;\;\; \downarrow topological twist
topologically twisted N=2 D=4 super Yang-Mills theory
\;\;\;\; \downarrow KK-compactification on Riemann surface
A-model on Bun GBun_G, Donaldson theory


gauge theory induced via AdS5-CFT4
type II string theory
\;\;\;\;\downarrow Kaluza-Klein compactification on S 5S^5
\;\;\;\; \downarrow topological sector
5-dimensional Chern-Simons theory
\;\;\;\;\downarrow AdS5-CFT4 holographic duality
N=4 D=4 super Yang-Mills theory
\;\;\;\;\; \downarrow topological twist
topologically twisted N=4 D=4 super Yang-Mills theory
\;\;\;\; \downarrow KK-compactification on Riemann surface
A-model on Bun GBun_G and B-model on Loc GLoc_G, geometric Langlands correspondence

Table of branes appearing in supergravity/string theory (for classification see at brane scan).

branein supergravitycharged under gauge fieldhas worldvolume theory
black branesupergravityhigher gauge fieldSCFT
D-branetype IIRR-fieldsuper Yang-Mills theory
(D=2n)(D = 2n)type IIA\,\,
D0-brane\,\,BFSS matrix model
D4-brane\,\,D=5 super Yang-Mills theory with Khovanov homology observables
D6-brane\,\,D=7 super Yang-Mills theory
(D=2n+1)(D = 2n+1)type IIB\,\,
D1-brane\,\,2d CFT with BH entropy
D3-brane\,\,N=4 D=4 super Yang-Mills theory
(D25-brane)(bosonic string theory)
NS-branetype I, II, heteroticcircle n-connection\,
string\,B2-field2d SCFT
NS5-brane\,B6-fieldlittle string theory
D-brane for topological string\,
M-brane11D SuGra/M-theorycircle n-connection\,
M2-brane\,C3-fieldABJM theory, BLG model
M5-brane\,C6-field6d (2,0)-superconformal QFT
M9-brane/O9-planeheterotic string theory
topological M2-branetopological M-theoryC3-field on G2-manifold
topological M5-brane\,C6-field on G2-manifold
solitons on M5-brane6d (2,0)-superconformal QFT
self-dual stringself-dual B-field
3-brane in 6d



The history as of the 1990 is reviewed in

Further reviews and general accounts include

Black brane description

The M5 was first found as a black brane of 11-dimensional supergravity (the black fivebrane) in

That this metric, as well as that of every black pp brane for odd pp, is completely non-singular was observed in

The orbifold structure for lower-BPS M5-branes is discussed in

σ\sigma-Model description

The sigma-model description of the (single) M5-brane of Green-Schwarz action functional-type was found in covariant form in

and in non-covariant form in

A comparison of the different action functionals here is in

The computation of the small fluctuations of this GS-type sigma-model around a solution embedding as the asymptotic boundary of the AdS-spacetime near-horizon geometry of a black 5-brane as above, and the proof, to low order, that the result is the 6d (2,0)-supersymmetric QFT appearing in AdS7-CFT6 duality is due to

A review with emphasis on the coupling to the M2-brane is in

The double dimensional reduction of the M5-brane to the D4-brane in type II string theory is discussed in

Further developments include

Anomaly cancellation

  • Samuel Monnier, global gravitational anomaly cancellation for five-branes, 2013 (pdf)

Worldvolume theory

The original article suggesting the description of the self-dual higher gauge theory on the 5-brane holographically by a dual higher dimensional Chern-Simons theory is

A precise mathematical formulation of the proposal made there is given in

A discussion that embeds this argument into the larger context of AdS-CFT duality is in

See also the references at 6d (2,0)-supersymmetric QFT.

The double dimensional reduction to the D4-brane D=5 super Yang-Mills theory and the relation to Khovanov homology is discussed in

with further comments in

  • Michele Nardelli, On some equations concerning Fivebranes and Knots, Wilson Loops in Chern-Simons Theory, cusp anomaly and integrability from String theory. Mathematical connections with some sectors of Number Theory (2011) (pdf)

Relation to D4-brane

The relation of the M5-brane to the D4-brane and the D=5 super Yang-Mills theory in its worldvolume theory by double dimensional reduction is discussed in the following references

  • Malcolm Perry, John Schwarz, Interacting Chiral Gauge Fields in Six Dimensions and Born-Infeld Theory, Nucl. Phys. B489 (1997) 47-64 (arXiv:hep-th/9611065)

  • Neil Lambert, Constantinos Papageorgakis, Maximilian Schmidt-Sommerfeld, M5-Branes, D4-Branes and Quantum 5D super-Yang-Mills, JHEP 1101:083 (2011) (arXiv:1012.2882)

  • Chong-Sun Chu, Sheng-Lan Ko, Non-abelian Action for Multiple Five-Branes with Self-Dual Tensors, (arXiv:1203.4224) JHEP05(2012)028

See also (Witten 11).

Open M5-branes

Discussion of open M5-branes ending on M9-branes in a Yang monopole is in

Nonabelian 2-form fields

The fact that the worldvolume theory of the M5-brane should support fields that are self-dual connections on a 2-bundle (\sim a gerbe) is discussed in

  • Edward Witten, Conformal Field Theory In Four And Six Dimensions, in Ulrike Tillmann, Topology, Geometry and Quantum Field Theory: Proceedings of the 2002 Oxford Symposium in Honour of the 60th Birthday of Graeme Segal, London Mathematical Society Lecture Note Series (2004) (arXiv:0712.0157)

as well as sections 3 and 4 of

Proposals for how to implement this are for instance in

A formal proposal is here.

More on the holographic description

  • A. J. Nurmagambetov, I. Y. Park, On the M5 and the AdS7/CFT6 Correspondence (arXiv:hep-th/0110192)

More on the algebraic topology

Revised on July 11, 2017 15:02:30 by Urs Schreiber (