nLab N-∞ operad

Redirected from "N-∞ operads".
Note: N-∞ operad and N-∞ operad both redirect for "N-∞ operads".
Content

Context

Equivariant higher algebra

Higher algebra

Content

Idea

A G G - \infty -operad is an 𝒩 \mathcal{N}_\infty-operad if it is infinitely connected (or equivalently, 0 0 -truncated), unital, and prescribes binary multiplications on fixed points for all subgroups.

These are meant to model the equivariant commutative operads which contain a non-genuine version of 𝔼 \mathbb{E}_\infty.

Definition

Let 𝔽̲ G 𝔽̲ G\underline{\mathbb{F}}_G^\infty \subset \underline{\mathbb{F}}_G be the GG-indexing system whose HH-sets are those finite HH-sets with trivial action, and let I 𝔽 GI^\infty \subset \mathbb{F}_G be the corresponding indexing category. Let 𝔼 =(Span I (𝔽 G)Span(𝔽 G))\mathbb{E}_\infty^{\otimes} = \left( \mathrm{Span}_{I^\infty}(\mathbb{F}_G) \rightarrow \mathrm{Span}(\mathbb{F}_G) \right) be the corresponding fibration. This turns out to be a G-∞-operad.

Definition

A weak 𝒩 \mathcal{N}_\infty-operad for GG is a GG-0-operad. An 𝒩 \mathcal{N}_\infty-operad for GG is a weak 𝒩 \mathcal{N}_\infty-operad for GG 𝒪 \mathcal{O}^{\otimes} admitting a map 𝔼 𝒪 \mathbb{E}_\infty^{\otimes} \rightarrow \mathcal{O}^{\otimes}.

Properties

Relationship to indexing systems/arity support

Fix S= in[G/H i]𝔽 GS = \coprod_{i \leq n} [G/H_i] \in \mathbb{F}_G a GG-set. Recall that Ind H i G:𝔽 H i𝔽 G,/[G/H i]\mathrm{Ind}_{H_i}^{G}:\mathbb{F}_{H_i} \rightarrow \mathbb{F}_{G, /[G/H_i]} is an equivalence; given φ:TS\varphi:T \rightarrow S an equivariant function of GG-sets, write T iT_i for the H iH_i-set corresponding with φ 1([G/H i])\varphi^{-1}([G/H_i]).

Definition

Given 𝒪 \mathcal{O}^{\otimes} a GG-operad, the arity support of 𝒪 \mathcal{O}^{\otimes} is the subcategory

A𝒪{TS[G/H i],Orbit(S),𝒪(T i)}𝔽 G. A \mathcal{O} \coloneqq \left\{T \rightarrow S \;\;\; \mid \;\;\; \forall [G/H_i], \in \mathrm{Orbit}(S), \;\; \mathcal{O}(T_i) \neq \emptyset \right\} \subset \mathbb{F}_{G}.

Let Op G Γ\mathrm{Op}_G^{\Gamma} be the (∞,1)-category presented by the graph model structure on GG-operads, and let 𝒩 Op G ΓOp G Γ\mathcal{N}_\infty-\mathrm{Op}_G^{\Gamma} \subset \mathrm{Op}_G^{\Gamma} be the full subcategory spanned by 𝒩 \mathcal{N}_\infty-operads.

Theorem

The functor AA restricts to an equivalence

A:𝒩 Op G ΓIndex G, A:\mathcal{N}_\infty-\mathrm{Op}_G^{\Gamma} \xrightarrow\sim \mathrm{Index}_G,

the latter denoting the poset of indexing systems.

Fully-faithfullness in the graph model category of GG-operads, was proved in Blumberg-Hill 13, followed by independent proofs in 2017 by Rubin, Gutiérrez-White, and Bonventre-Pereira.

Subsequently, this was generalized to the orbital setting in Nardin-Shah 22, and to weak indexing systems in Stewart 24:

Theorem

For all G-∞-operads 𝒪 \mathcal{O}^{\otimes}, A𝒪A \mathcal{O} is a weak indexing category, and the associated functor

A:Op GwIndex G A:\mathrm{Op}_G \rightarrow \mathrm{wIndex}_G

attains a fully faithful faithful right adjoint whose image is the weak 𝒩 \mathcal{N}_\infty-operads for GG; the image of the subposet Index GwIndex G\mathrm{Index}_G \subset \mathrm{wIndex}_G is the 𝒩 \mathcal{N}_\infty-operads for GG.

As sub-terminal GG-\infty-operads

Let 𝒩 () :wIndex GOp G\mathcal{N}_{(-)\infty}^{\otimes}:\mathrm{wIndex}_G \rightarrow \mathrm{Op}_G be the right adjoint to AA. The adjoint relationship implies that, for all GG-\infty-operads 𝒫 \mathcal{P}^{\otimes}, we have

Map(𝒫 ,𝒩 I )={* A𝒫I, otherwise. \Map(\mathcal{P}^{\otimes}, \mathcal{N}_{I\infty}^{\otimes}) = \begin{cases} * & A\mathcal{P} \subset I,\\ \emptyset & \mathrm{otherwise}. \end{cases}

In other words, 𝒩 I Op G\mathcal{N}_{I \infty}^{\otimes} \in \mathrm{Op}_G is a subterminal object classifying the arity support condition A()IA(-) \leq I. We refer to the resulting full subcategory Op IOp G,𝒩 I Op G\mathrm{Op}_I \coloneqq \mathrm{Op}_{G, \mathcal{N}_{I \infty}^{\otimes}} \subset \mathrm{Op}_G as the II-operads.

On the other hand, it is shown in Stewart 24 that the functor 𝒪 𝒪(S)\mathcal{O}^{\otimes} \mapsto \mathcal{O}(S) is corepresentable, so if 𝒪 \mathcal{O}^{\otimes} is a subterminal GG-\infty-operad, its SS-ary operation space 𝒪(S)\mathcal{O}(S) is either empty or contractible for all SS; unwinding definitions, this shows that a GG-\infty-operad is subterminal if and only if it’s a weak 𝒩 \mathcal{N}_\infty-operad for GG.

As \otimes-idempotent GG-\infty-operads.

The Boardman-Vogt tensor product naturally extends to a tensor product on GG-operads via the formula

𝒪 BV𝒫 L Op G(𝒪 ×𝒫 Span(𝔽 G)×Span(𝔽 G)Span(𝔽 G))),\mathcal{O}^{\otimes} \otimes^{BV} \mathcal{P}^{\otimes} \coloneqq L_{\mathrm{Op}_G} \left( \mathcal{O}^{\otimes} \times \mathcal{P}^{\otimes} \rightarrow \mathrm{Span}(\mathbb{F}_G) \times \mathrm{Span}(\mathbb{F}_G) \xrightarrow{\wedge} \mathrm{Span}(\mathbb{F}_G)) \right),

where :Span(𝔽 G)×Span(𝔽 G)Span(𝔽 G)\wedge:\mathrm{Span}(\mathbb{F}_G) \times \mathrm{Span}(\mathbb{F}_G) \rightarrow \mathrm{Span}(\mathbb{F}_G) is induced by the cartesian product of finite GG-sets. The following is shown in Stewart 24.

Theorem

There exists an equivalence 𝒩 I BV𝒩 I 𝒩 I \mathcal{N}_{I\infty}^{\otimes} \otimes^{BV} \mathcal{N}_{I \infty}^{\otimes} \simeq \mathcal{N}_{I \infty}^{\otimes} if and only if II is an aE-unital weak indexing system, in which case a reduced GG-\infty-operad 𝒪 \mathcal{O}^{\otimes} satisfies

𝒪 BV𝒩 I 𝒪 \mathcal{O}^{\otimes} \otimes^{BV} \mathcal{N}_{I \infty}^{\otimes} \simeq \mathcal{O}^{\otimes}

if and only if the G-∞-category Alg̲ 𝒪(𝒮̲ G)\underline{\mathrm{Alg}}_{\mathcal{O}}(\underline{\mathcal{S}}_G) of 𝒪\mathcal{O}-algebras in G-spaces is I-semiadditive.

As a corollary, Stewart 24 concludes the following.

Corollary

If II and JJ are unital weak indexing systems, then there is a (unique) equivalence

𝒩 I BV𝒩 J 𝒩 IJ , \mathcal{N}_{I\infty}^{\otimes} \otimes^{BV} \mathcal{N}_{J \infty}^{\otimes} \simeq \mathcal{N}_{I \vee J \infty}^{\otimes},

where IJI \vee J denotes the join of II and JJ in the poset of weak indexing systems.

The same theorem extends to aE-unital weak indexing systems, but the statement is somewhat more complicated; since indexing systems are a join-closed full sub-poset of weak indexing systems, this specializes to a theorem on the level of indexing systems, by omitting the words “unital weak.”

In the language of §6.3 of Blumberg-Hill 13, this confirms that in the homotopy-coherent setting every action of an 𝒩 \mathcal{N}_\infty-operad interchanges with itself, and every pair of interchanging II- and JJ-commutative algebra structures agrees on IJI \cap J and is restricted from an IJI \vee J-commutative algebra structure.

Algebras over 𝒩 \mathcal{N}_\infty-operads

As incomplete Mackey functors in the cartesian setting

The following theorem was proved in the setting of graph GG-operads and for 𝒞=𝒮̲ G\mathcal{C} = \underline{\mathcal{S}}_G in Marc 24, and in the setting of G-∞-operads in Stewart 24.

Theorem

If 𝒞 \mathcal{C}^{\otimes} is a I-symmetric monoidal ∞-category whose indexed tensor products are indexed products, then there is a canonical equivalence

Alg 𝒩 I(𝒞)CMon I(𝒞) \mathrm{Alg}_{\mathcal{N}_{I \infty}}(\mathcal{C}) \simeq \mathrm{CMon}_I(\mathcal{C})

over 𝒞\mathcal{C}. In particular, if 𝒞\mathcal{C} is the GG-\infty-category of coefficient systems in an ∞-category 𝒱\mathcal{V} with its Cartesian structure, then there is an equivalence

Alg 𝒩 I(𝒞)Fun ×(Span(𝔽 G,𝒱). \mathrm{Alg}_{\mathcal{N}_{I \infty}}(\mathcal{C}) \simeq \mathrm{Fun}^{\times}(\mathrm{Span}(\mathbb{F}_G, \mathcal{V}).

As incomplete Tambara functors

In CHLL 24, it is shown that the equivariant Day convolution G-symmetric monoidal structure structure on the equivariant functor category Fun(Span(𝔽 G̲),𝒞)\mathrm{Fun}(\mathrm{Span}(\underline{\mathbb{F}_G}), \mathcal{C}) restricts to a GG-symmetric monoidal structure on the G-∞-category CMon̲ G(𝒞)\underline{\mathrm{CMon}}_G(\mathcal{C}) of G-commutative monoids in 𝒞\mathcal{C}. Then, CHLL 24 Theorem B concludes that 𝒩 I\mathcal{N}_{I\infty}-algebras are homotopy-coherent incomplete Tambra functors.

Theorem

There is a fully faithful functor

CAlg I(Sp̲ G )Fun ×(BiSpan I(𝔽 G),𝒮) \mathrm{CAlg}_I(\underline{\mathrm{Sp}}_G^{\otimes}) \hookrightarrow \mathrm{Fun}^{\times}(\mathrm{BiSpan}_I(\mathbb{F}_G), \mathcal{S})

whose image consists of the functors whose HH-value “additive” commutative monoid is grouplike for all HGH \subset G.

As normed algebras

(under construction…)

Let pp be a prime number and C pC_p the cyclic group of order pp. Let () e:Sp GSp BG(-)^e\colon \mathrm{Sp}_G \rightarrow \mathrm{Sp}^{BG} be the underlying spectrum with GG-action, and let N e GN_e^G be the Hill-Hopkins-Ravanel norm GG-spectrum on a spectrum.

Given ACAlg(Sp BC p)A \in \mathrm{CAlg}(\mathrm{Sp}^{BC_p}) a (highly structured) commutative ring spectrum with C pC_p-action, we let A ΔpCAlg(Sp BC p)A^{\otimes^{\Delta} p} \in \mathrm{CAlg}(\mathrm{Sp}^{BC_p}) be the commutative ring spectrum with diagonal C pC_p-action

σ(a 1a p)=σ(a p)σ(a 1)σ(a p1). \sigma(a_1 \otimes \cdots \otimes a_p) = \sigma(a_p) \otimes \sigma(a_1) \otimes \cdots \otimes \sigma(a_{p-1}).

Furthermore, we let A τpCAlg(Sp BC p)A^{\otimes^{\tau} p} \in \mathrm{CAlg}(\mathrm{Sp}^{BC_p}) be the commutative ring spectrum with transpotiion C pC_p-action

σ(a 1a p)=a pa 1a p1. \sigma(a_1 \otimes \cdots \otimes a_p) = a_p \otimes a_1 \otimes \cdots \otimes a_{p-1}.

Definition

A normed 𝔼 \mathbb{E}_\infty-algebra in C pC_p-spectra is the data of

  • an 𝔼 \mathbb{E}_\infty-algebra in C pC_p,

  • a morphism of 𝔼 \mathbb{E}_\infty-rings n A:N e C pA h C p eAn_A\colon N^{C_p}_e A^e_{h_{C_p}} \rightarrow A, and

  • a homotopy making the following diagram 𝒪 C p𝔼 Alg(Sp) BC p\mathcal{O}_{C_p} \rightarrow \mathbb{E}_\infty \mathrm{Alg}(\mathrm{Sp})^{B C_p} commute:

We denote the category of normed 𝔼 \mathbb{E}_\infty-algebras in C pC_p-spectra by NAlg C p(Sp C p)\mathrm{NAlg}_{C_p}(\mathrm{Sp}_{C_p}).

Yang 23 constructs a forgetful functor U:CAlg C p(Sp C p)NAlg C p(Sp C p)U\colon \mathrm{CAlg}_{C_p}(\mathrm{Sp}_{C_p}) \rightarrow \mathrm{NAlg}_{C_p}(\mathrm{Sp}_{C_p}). The main result of Yang 23 is that this is an equivalence:

Theorem

The forgetful functor

U:CAlg C p(Sp C p)NAlg C p(Sp C p) U\colon \mathrm{CAlg}_{C_p}(\mathrm{Sp}_{C_p}) \rightarrow \mathrm{NAlg}_{C_p}(\mathrm{Sp}_{C_p})

is an equivalence.

References

Originally,

Classification via indexing systems (each independently proves this):

Presentation of algebras in various cases:

Last revised on December 4, 2024 at 04:48:19. See the history of this page for a list of all contributions to it.