nLab G-∞-category

Contents

Context

Higher category theory

higher category theory

Basic concepts

Basic theorems

Applications

Models

Morphisms

Functors

Universal constructions

Extra properties and structure

1-categorical presentations

Representation theory

Contents

Idea

Let 𝒮 G\mathcal{S}_G be the (∞,1)-category of G-spaces, and let 𝒪 G\mathcal{O}_G be the orbit category. Elmendorf's theorem provides an equivalence 𝒮 GFun(𝒪 G op,𝒮)\mathcal{S}_G \simeq \mathrm{Fun}(\mathcal{O}_G^{\op},\mathcal{S}). The starting point of Parametrized Higher Category Theory and Higher Algebra is to define GG-\infty-categories so that they satisfy Elmendorf's theorem.

Definition

Definition

The ∞-category of small GG-\infty-categories is

Cat G,Fun(𝒪 G op,Cat ). \mathrm{Cat}_{G,\infty} \coloneqq \mathrm{Fun}(\mathcal{O}_G^{\op}, \mathrm{Cat}_\infty).

More generally, often 𝒯\mathcal{T} will be an orbital ∞-category; in any case, we make the analogous definition.

Definition

If 𝒯\mathcal{T} is an (∞,1)-category, then the (∞,1)-category of small 𝒯\mathcal{T}-\infty-categories is

Cat 𝒯,Fun(𝒯 op,Cat ). \mathrm{Cat}_{\mathcal{T},\infty} \coloneqq \mathrm{Fun}(\mathcal{T}^{\op}, \mathrm{Cat}_\infty).

Examples

(Genuine) GG-spaces

GG-set induction furnishes an equivalence of categories 𝔽 H𝔽 G,/[G/H]\mathbb{F}_H \xrightarrow\sim \mathbb{F}_{G,/[G/H]}, which preserves and reflects transitivity; in particular, it restricts to an equivalence of orbit categories 𝒪 H𝒪 G,[G/H]\mathcal{O}_H \xrightarrow\sim \mathcal{O}_{G, [G/H]}, with which we will conflate these two categories.

Using this, the universal fibration functor 𝒪 =𝒪 G,/:𝒪Cat \mathcal{O}_{-} = \mathcal{O}_{G, /-}:\mathcal{O} \rightarrow \Cat_{\infty} is a GG-object in whose HH-value is 𝒪 H\mathcal{O}_H. By passing to presheaves of spaces fiberwise, we use this to define the GG-\infty-category of GG-spaces

𝒮̲ G:𝒪 G op𝒪 ()Cat opPshCat . \underline{\mathcal{S}}_G: \mathcal{O}_G^{\op} \xrightarrow{\;\;\;\; \mathcal{O}_{(-)} \;\;\;\; } \mathrm{Cat}_\infty^{\op} \xrightarrow{\;\;\;\; \mathrm{Psh}\;\;\;\; } \mathrm{Cat}_\infty.

Unwinding definitions, the following proposition is a form of Elmendorf's theorem.

Proposition

The HH-value of the G-∞-category of GG-spaces is the \infty-category 𝒮 H\mathcal{S}_H of H-spaces, and the induced functor Res H G:𝒮 G𝒮 H\Res_H^G:\mathcal{S}_G \rightarrow \mathcal{S}_H is restriction.

Thus GG-functors out of 𝒮̲ G\underline{\mathcal{S}}_G are usually interpretable as collections of functors out of (𝒮 H)(\mathcal{S}_H) which intertwine with restriction.

References

Last revised on July 30, 2024 at 15:29:39. See the history of this page for a list of all contributions to it.