On topological crystalline insulators:
On topological crystalline insulators and their classification by equivariant K-theory:
On anyonic braiding of nodal points in the Brillouin zone of semi-metals (“braiding in momentum space”):
Adrien Bouhon, QuanSheng Wu, Robert-Jan Slager, Hongming Weng, Oleg V. Yazyev, Tomáš Bzdušek, Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe, Nature Physics 16 (2020) 1137–1143 (arXiv:1907.10611, doi:10.1038/s41567-020-0967-9)
Bin Jiang, Adrien Bouhon, Zhi-Kang Lin, Xiaoxi Zhou, Bo Hou, Feng Li, Robert-Jan Slager, Jian-Hua Jiang Observation of non-Abelian topological semimetals and their phase transitions, Nature Physics 17 (2021) 1239-1246 [arXiv:2104.13397, doi:10.1038/s41567-021-01340-x]
Siyu Chen, Adrien Bouhon, Robert-Jan Slager, Bartomeu Monserrat, Non-Abelian braiding of Weyl nodes via symmetry-constrained phase transitions (formerly: Manipulation and braiding of Weyl nodes using symmetry-constrained phase transitions), Phys. Rev. B 105 (2022) L081117 arXiv:2108.10330, doi:10.1103/PhysRevB.105.L081117
Bo Peng, Adrien Bouhon, Robert-Jan Slager, Bartomeu Monserrat, Multi-gap topology and non-Abelian braiding of phonons from first principles, Phys. Rev. B 105 (2022) 085115 [arXiv:2111.05872, doi:10.1103/PhysRevB.105.085115]
Bo Peng, Adrien Bouhon, Bartomeu Monserrat, Robert-Jan Slager, Phonons as a platform for non-Abelian braiding and its manifestation in layered silicates, Nature Communications volume 13, Article number: 423 (2022) (doi:10.1038/s41467-022-28046-9)
Adrien Bouhon, Robert-Jan Slager: Multi-gap topological conversion of Euler class via band-node braiding: minimal models, PT-linked nodal rings, and chiral heirs [arXiv:2203.16741]
Robert-Jan Slager, Adrien Bouhon, Fatma Nur Ünal, Floquet multi-gap topology: Non-Abelian braiding and anomalous Dirac string phase [arXiv:2208.12824]
Wojciech J. Jankowski, Mohammedreza Noormandipour, Adrien Bouhon, Robert-Jan Slager: Disorder-induced topological quantum phase transitions in Euler semimetals, Phys. Rev. B 110 (2024) 064202 [arXiv:2306.13084, doi:10.1103/PhysRevB.110.064202]
Arguments that some effects in topological phases of matter are “unstable” or “fragile” in that the relevant deformation class of their valence bundles over the Brillouin torus is not their class in topological K-theory (as assumed by the K-theory classification of topological phases of matter) but an unstable homotopy class (what may be called a class in generalized nonabelian cohomology) such as of maps to a Grassmannian space (or more general flag variety) classifying (systems of) sub-bundles of a trivial vector bundle of fixed finite rank:
Adrien Bouhon, Tomáš Bzdušek, Robert-Jan Slager: Geometric approach to fragile topology beyond symmetry indicators, Phys. Rev. B 102 (2020) 115135 [arXiv:2005.02044, doi:10.1103/PhysRevB.102.115135]
Zory Davoyan, Wojciech J. Jankowski, Adrien Bouhon, Robert-Jan Slager: Three-dimensional -symmetric topological phases with Pontryagin index [arXiv:2308.15555, doi:10.1103/PhysRevB.109.165125]
Last revised on June 2, 2025 at 19:46:41. See the history of this page for a list of all contributions to it.