William G. Dwyer is a mathematician at the University of Notre Dame.
On the -Borel model structure and its Quillen equivalence with the slice model structure over the simplicial classifying space :
William Dwyer, Daniel Kan, Simplicial localizations of categories, J. Pure Appl. Algebra 17 3 (1980), 267-284 [doi:10.1016/0022-4049(80)90049-3, pdf]
William Dwyer, Daniel Kan, Calculating simplicial localizations, J. Pure Appl. Algebra 18 (1980), 17-35 [doi:10.1016/0022-4049(80)90113-9, pdf]
William Dwyer, Daniel Kan, Function complexes in homotopical algebra, Topology 19 (1980), 427-440 [doi:10.1016/0040-9383(80)90025-7, pdf]
William Dwyer, Daniel Kan, Equivalences between homotopy theories of diagrams, in: Algebraic topology and algebraic K-theory, Ann. of Math. Stud. 113, Princeton University Press (1988) [doi:10.1515/9781400882113-009]
On derived hom-spaces (function complexes) in projective model structures on simplicial presheaves:
On (enhancement and generalization of) Elmendorf's theorem in equivariant homotopy theory:
Introducing the model structure on simplicial groupoids:
On homotopy commutative diagrams:
On p-compact groups:
Introducing the Dwyer-Wilkerson H-space:
On homotopy theory and model categories:
William Dwyer, Jan Spalinski, Homotopy theories and model categories (pdf)
in: I. M. James, Handbook of Algebraic Topology, North Holland 1995 (ISBN:9780080532981, doi:10.1016/B978-0-444-81779-2.X5000-7)
On homotopy theoretic methods in group cohomology:
On derived functors such as homotopy limit-functors on model categories and more general homotopical categories:
On localization in homotopy theory:
On homotopy theory and classifying spaces:
Last revised on May 31, 2023 at 16:09:21. See the history of this page for a list of all contributions to it.