algebraic space



An algebraic space is an object in the sheaf topos over the fppf-site, that has representable diagonal and an étale cover(atlas) by a scheme.

In algebraic geometry one can glue affine schemes in various topologies; this way one obtains various kinds of locally affine ringed spaces. For example, schemes locally affine in Zariski topology. Étale topology is finer than Zariski, hence the category of locally affine (ringed) spaces in étale topology is larger than the category of schemes. Algebraic spaces make a category which includes the category of all schemes and is close to the category of locally affine spaces in étale topology, namely it consists of those ringed spaces which may be obtained as a quotient of a scheme SS by an equivalence relation RS×SR\subset S\times S which is a closed subscheme, and whose projections p 1,p 2:RSp_1,p_2: R\to S are étale morphisms of schemes.


Write C fppfC_{fppf} for the fppf-site (over some scheme, as desired).


An algebraic space is

  • an object XSh(C fppf)X \in Sh(C_{fppf}) in the sheaf topos;

  • whose diagonal morphism XX×XX \to X \times X is representable;

  • and for which there exists UCU \in C and a morphism UXU \to X which is

In this form this appears as de Jong, def. 35.6.1.


Characterization as presheaf on affine schemes


Algebraic spaces are the topic of chapter 35 in

A standard monograph on algebraic spaces is

  • D. Knutson, Algebraic spaces , LNM 203, Springer 1971.

Lecture notes include

Definition in E-∞ geometry is in

  • Jacob Lurie, section 1.3 of Quasi-Coherent Sheaves and

    Tannaka Duality Theorems?</span>_

Some related MO questions:

Last revised on December 30, 2016 at 06:33:13. See the history of this page for a list of all contributions to it.