nLab
differential topology

Contents

Context

Topology

topology (point-set topology, point-free topology)

see also differential topology, algebraic topology, functional analysis and topological homotopy theory

Introduction

Basic concepts

Universal constructions

Extra stuff, structure, properties

Examples

Basic statements

Theorems

Analysis Theorems

topological homotopy theory

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

  • (shape modality \dashv flat modality \dashv sharp modality)

    (ʃ)(ʃ \dashv \flat \dashv \sharp )

  • dR-shape modality\dashv dR-flat modality

    ʃ dR dRʃ_{dR} \dashv \flat_{dR}

  • tangent cohesion

    • differential cohomology diagram
    • differential cohesion

      • (reduction modality \dashv infinitesimal shape modality \dashv infinitesimal flat modality)

        (&)(\Re \dashv \Im \dashv \&)

      • graded differential cohesion

        • fermionic modality\dashv bosonic modality \dashv rheonomy modality

          (Rh)(\rightrightarrows \dashv \rightsquigarrow \dashv Rh)

        • id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous *

          \array{ && id &\dashv& id \ && \vee && \vee \ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \ && \bot && \bot \ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& Rh & \stackrel{rheonomic}{} \ && \vee && \vee \ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \ && \bot && \bot \ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \ && \vee && \vee \ &\stackrel{cohesive}{}& ʃ &\dashv& \flat & \stackrel{discrete}{} \ && \bot && \bot \ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \ && \vee && \vee \ && \emptyset &\dashv& \ast }

          </semantics></math></div>

          Models

          Lie theory, ∞-Lie theory

          differential equations, variational calculus

          Chern-Weil theory, ∞-Chern-Weil theory

          Cartan geometry (super, higher)

          Contents

          Idea

          Differential topology is the subject devoted to the study of topological properties of differentiable manifolds, smooth manifolds and related differential geometric spaces such as stratifolds, orbifolds and more generally differentiable stacks.

          Diffrential topology is also concerned with the problem of finding out which topological (or PL) manifolds allow a differentiable structure and the degree of nonuniqueness of that structure if they do (e.g. exotic smooth structures). It is also concerned with concrete constructions of (co)homology classes (e.g. characteristic classes) for differentiable manifolds and of differential refinements of cohomology theories.

          Examples

          Many considerations, and classification problems, depend crucially on dimension, and the case of high-dimensional manifolds (the notion of ‘high’ depends on the problem) is often very different from the situation in each of the low dimensions; thus there are specialists’ subjects like 33-(dimensional) topology and 44-topology. There are restrictions on an underlying topology which is allowed for some sorts of additional structures on a differentiable manifold.

          For example, only some even-dimensional differentiable manifolds allow for symplectic structure and only some odd-dimensional one allow for a contact structure; in these cases moreover special constructions of topological invariants like Floer homology and symplectic field theory exist.

          This yields the relatively young subjects of symplectic and contact topologies, with the first significant results coming from Gromov. Any (Hausdorff paracompact finite-dimensional) differentiable manifold allows for riemannian structure however; therefore there is no special subject of ‘riemannian topology’.

          References

          Though some of the basic results, methods and conjectures of differential topology go back to Poincaré, Whitney, Morse and Pontrjagin, it became an independent field only in the late 1950s and early 1960s with the seminal works of Smale, Thom, Milnor and Hirsch. Soon after the initial effort on foundations, mainly in American school, a strong activity started in Soviet Union (Albert Schwarz, A. S. Mishchenko, S. Novikov, V. A. Rokhlin, M. Gromov…).

          • John Milnor, Differential topology, chapter 6 in T. L. Saaty (ed.) Lectures On Modern Mathematic II 1964 (web, pdf)

          • John Milnor, Topology from differential viewpoint

          • James Munkres, Elementary differential geometry

          • Morris Hirsch, Differential topology, Springer GTM 33, gBooks

          • T. Bröcker, K. Jänich, C. B. Thomas, M. J. Thomas, Introduction to differentiable topology, 1982 (translated from German 1973 edition; \exists also 1990 German 2nd edition)

          • R. Bott, L. W. Tu, Differential forms in algebraic topology, Graduate Texts in Math. 82, Springer 1982. xiv+331 pp.

          • Victor Guillemin, Alan Pollack, Differential topology, Prentice-Hall

          • M. M. Postnikov, Introduction to Morse theory (in Russian)

          • J. Milnor, Lectures on h-cobordism

          • Andrew H. Wallace, Differential topology: first steps, Benjamin 1968.

          • Joel W. Robbin, Dietmar Salamon, Introduction to differential topology, 294 pp, webdraft 2018 pdf

          • C. T. C. Wall, Differential topology, Cambridge Studies in Advanced Matyhematics 154, 2016

          Last revised on June 17, 2018 at 12:01:36. See the history of this page for a list of all contributions to it.