The bicrossed product generalizes the semidirect product of groups.
This construction is essential to the quantum double construction? of Drinfel’d.
Given a pair of matched groups and , the bicrossed product of groups on the set is given by
with unit and , , where , are left and right actions, respectively.
A pair of groups is said to be matched if there exists a left action of on the set and a right action of the group on the set such that for all , , the following hold:
Need to define the bicrossed product of algebras.
C. Kassel, Quantum Groups, Graduate Texts in Mathematics 155, Springer-Verlag, New York-Berlin, 1995.
Last revised on September 10, 2017 at 07:11:18. See the history of this page for a list of all contributions to it.