complemented subobject

A subobject given by a monomorphism i:SXi: S \to X in a coherent category is complemented if it has a complement: a subobject i˜:S˜X\tilde{i}: \tilde{S} \to X such that SS˜S \cap \tilde{S} is the initial object and SS˜=XS \cup \tilde{S} = X. Every subobject is complemented in a Boolean category.

In constructive mathematics, a complemented subobject in Set is called a decidable subset; in classical mathematics, every subset is decidable. Indeed, the law of excluded middle may be taken to say precisely that every subset of the point is complemented.

More generally, if every subobject of the terminal object of a well-pointed coherent category CC is complemented, then every subobject in CC is complemented.

Last revised on December 11, 2009 at 10:20:42. See the history of this page for a list of all contributions to it.