nLab fiberwise core

Content

Content

Definition

Definition

Let φ:𝒞\varphi:\mathcal{C} \rightarrow \mathcal{B} be a cocartesian fibration. Then, the fiberwise core of 𝒞\mathcal{C} is the cocartesian fibration

St(UnφCat () 𝒮Cat ), \mathrm{St} \left( \mathcal{B} \xrightarrow{\mathrm{Un} \varphi} \mathbf{Cat}_\infty \xrightarrow{(-)^{\simeq}} \mathcal{S} \hookrightarrow \mathbf{Cat}_{\infty} \right),

where St\mathrm{St} and Un\mathrm{Un} denote the straightening and unstraightening functors and () (-)^{\simeq} denotes the core.

If =𝒪 G op\mathcal{B} = \mathcal{O}_G^{\mathrm{op}} is the orbit category of a finite group, then this is naturally a G-space via Elmendorf's theorem, and we also refer to this G-space as the fiberwise core of 𝒞\mathcal{C}.

Last revised on July 14, 2024 at 14:23:55. See the history of this page for a list of all contributions to it.