On WZW models at fractional level:
Sunil Mukhi, Sudhakar Panda, Fractional-level current algebras and the classification of characters, Nuclear Physics B 338 1 (1990) 263-282 doi:10.1016/0550-3213(90)90632-N
Gregory Moore, Nicholas Read, p. 389 of: Nonabelions in the fractional quantum hall effect, Nuclear Physics B 360 2–3 (1991) 362-396 doi:10.1016/0550-3213(91)90407-O, pdf
(suggesting the fractional level as related to Laughlin wavefunctions of anyons)
Hidetoshi Awata, Yasuhiko Yamada, Fusion rules for the fractional level algebra, Mod. Phys. Lett. A 7 (1992) 1185-1196 spire:332974, doi:10.1142/S0217732392003645
P. Furlan, A. Ch. Ganchev, R. Paunov, Valentina B. Petkova, Solutions of the Knizhnik-Zamolodchikov Equation with Rational Isospins and the Reduction to the Minimal Models, Nucl. Phys. B394 (1993) 665-706 (arXiv:hep-th/9201080, doi:10.1016/0550-3213(93)90227-G)
J. L. Petersen, J. Rasmussen, M. Yu, Fusion, Crossing and Monodromy in Conformal Field Theory Based on Current Algebra with Fractional Level, Nucl. Phys. B481 (1996) 577-624 (arXiv:hep-th/9607129, doi:10.1016/S0550-3213(96)00506-8)
Boris Feigin, Feodor Malikov, Modular functor and representation theory of at a rational level, p. 357-405 in: Loday, Stasheff, Voronov (eds.) Operads: Proceedings of Renaissance Conferences, Contemporary Mathematics 202, AMS (1997) arXiv:q-alg/9511011, ams:conm-202
with a good review in:
On braided fusion categories formed by affine Lie algebra-representations at admissible fractional level:
On interpreting fractional level WZW models as logarithmic CFTs:
Matthias R. Gaberdiel, Fusion rules and logarithmic representations of a WZW model at fractional level, Nucl. Phys. B 618 (2001) 407-436 arXiv:hep-th/0105046, doi:10.1016/S0550-3213(01)00490-4)
Matthias R. Gaberdiel, Section 5 of: An algebraic approach to logarithmic conformal field theory, Int. J. Mod. Phys. A 18 (2003) 4593-4638 arXiv:hep-th/0111260, doi:10.1142/S0217751X03016860
David Ridout, : A Case Study, Nucl. Phys. B 814 (2009) 485-521 arXiv:0810.3532, doi:10.1016/j.nuclphysb.2009.01.008
Thomas Creutzig, David Ridout, Modular Data and Verlinde Formulae for Fractional Level WZW Models I, Nuclear Physics B 865 1 (2012) 83-114 arXiv:1205.6513, doi:10.1016/j.nuclphysb.2012.07.018
Thomas Creutzig, David Ridout, Modular Data and Verlinde Formulae for Fractional Level WZW Models II, Nuclear Physics B 875 2 (2013) 423-458 arXiv:1306.4388, doi:10.1016/j.nuclphysb.2013.07.008
Thomas Creutzig, David Ridout, Section 4 of: Logarithmic conformal field theory: beyond an introduction, J. Phys. A: Math. Theor. 46 (2013) 494006 (doi:10.1088/1751-8113/46/49/494006, arXiv:1303.0847)
Kazuya Kawasetsu, David Ridout, Relaxed highest-weight modules I: rank 1 cases, Commun. Math. Phys. 368 (2019) 627–663 arXiv:1803.01989, doi:10.1007/s00220-019-03305-x
Kazuya Kawasetsu, David Ridout, Relaxed highest-weight modules II: classifications for affine vertex algebras, Communications in Contemporary Mathematics, 24 05 (2022) 2150037 arXiv:1906.02935, doi:10.1142/S0219199721500371
Reviewed in:
David Ridout, Fractional Level WZW Models as Logarithmic CFTs (2010) pdf, pdf
David Ridout, Fractional-level WZW models (2020) pdf, pdf
In particular, the logarithmic model is essentially an admissible-level WZW model (namely at level ):
with a comprehensive account in:
On the model as the WZW model at fractional level and relation to the beta-gamma system:
and its lift to a logarithmic CFT:
On quasi-characters at fractional level:
Identification of would-be fractional level conformal blocks in twisted equivariant K-theory of configuration spaces of points:
Last revised on October 27, 2023 at 07:19:23. See the history of this page for a list of all contributions to it.