nLab
linear isometry
Contents
Context
Linear algebra
linear algebra , higher linear algebra
Ingredients
Basic concepts
ring , A-∞ ring
commutative ring , E-∞ ring
module , ∞-module , (∞,n)-module
field , ∞-field
vector space , 2-vector space
rational vector space
real vector space
complex vector space
topological vector space
linear basis ,
orthogonal basis , orthonormal basis
linear map , antilinear map
matrix (square , invertible , diagonal , hermitian , symmetric , …)
general linear group , matrix group
eigenspace , eigenvalue
inner product , Hermitian form
Gram-Schmidt process
Hilbert space
Theorems
(…)
Contents
Idea
A linear isometry is a linear map
ϕ : ℋ 1 ⟶ ℋ 2
\phi
\,\colon\,
\mathscr{H}_1
\longrightarrow
\mathscr{H}_2
between normed vector spaces which preserves the norm:
‖ ψ ( − ) ‖ 2 = ‖ − ‖ 1 .
\big\Vert \psi(-) \big\Vert_2
\;=\;
\big\Vert - \big\Vert_1
\,.
In particular, when the norm is induced by (Hermitian ) inner products ⟨ ⋅ | ⋅ ⟩ i {\langle \cdot \vert \cdot \rangle}_{i} (as on Hilbert spaces )
‖ ψ ‖ i ≡ ⟨ ψ | ψ ⟩ i
{\big\Vert \psi \big\Vert}_i
\,\equiv\,
\sqrt{
\left\langle \psi \vert \psi \right\rangle_i
}
then a linear isometry is an isometry in that it preserves these inner products:
⟨ ϕ ( − ) | ϕ ( − ) ⟩ 2 = ⟨ − | − ⟩ 1
\big\langle \phi(-) \vert \phi(-) \big\rangle_2
\;=\;
\left\langle - \vert - \right\rangle_1
or equivalently, in terms of adjoint operators :
(1) ϕ † ⋅ ϕ = Id ℋ 1 .
\phi^\dagger \cdot \phi \,=\, Id_{\mathscr{H}_1}
\,.
Properties
Proof
For | ψ ⟩ , | ψ ′ ⟩ : ℋ \left\vert \psi \right\rangle, \left\vert \psi' \right\rangle \,\colon\, \mathscr{H} we need to show that
ϕ | ψ ⟩ = ϕ | ψ ′ ⟩ ⇒ | ψ ⟩ = | ψ ′ ⟩ .
\phi\left\vert \psi \right\rangle
\;=\;
\phi\left\vert \psi' \right\rangle
\;\;\;\;
\Rightarrow
\;\;\;\;
\left\vert \psi \right\rangle
\;=\;
\left\vert \psi' \right\rangle
\mathrlap{\,.}
But by non-degeneracy of the norm this is equivalent to showing
‖ ϕ ( | ψ ⟩ − | ψ ′ ⟩ ) ‖ = 0 ⇒ ‖ | ψ ⟩ − | ψ ′ ⟩ ‖ = 0 .
{
\Big\Vert
\phi
\big(
\left\vert \psi \right\rangle
-
\left\vert \psi' \right\rangle
\big)
\Big\Vert
}
\,=\,
0
\;\;\;\;\;\;\;
\Rightarrow
\;\;\;\;\;\;\;
{
\Big\Vert
\left\vert \psi \right\rangle
-
\left\vert \psi' \right\rangle
\Big\Vert
}
\,=\,
0
\mathrlap{\,.}
But since ϕ \phi is an isometry, here the left hand side already coincides with the right hand side and hence certainly implies it.
References
See also:
Last revised on September 26, 2023 at 06:03:04.
See the history of this page for a list of all contributions to it.