This article is about homomorphisms between schemes which are locally of finite type. For the notion of locally finite type in dependent type theory, see locally finite type.
higher geometry / derived geometry
Ingredients
Concepts
geometric little (∞,1)-toposes
geometric big (∞,1)-toposes
Constructions
Examples
derived smooth geometry
Theorems
A homomorphism between schemes is said to be (locally) of finite type if it behaves like a finite covering space.
A morphism of schemes is locally of finite type if
for every open cover by affine schemes, ;
and every cover by affine schemes , fitting into a commuting diagram (this always exists, see coverage)
for all ,
we have that the morphism of algebras formally dual to exhibits as a finitely generated algebra over .
If for fixed the range only over a finite set, then the morphism is said to be of finite type.
Introductory disucssoon over the complex numbers (with an eye towards GAGA) is in
Last revised on July 25, 2023 at 16:09:33. See the history of this page for a list of all contributions to it.