Limits and colimits

(0,1)(0,1)-Category theory



In a preordered set or partially ordered set then the meet or infimum of a subset of elements is, if it exists, the largest element which is smaller or equal to all the elements in the set. If this element is member of the original subset, then it is also called the minimum of that subset.

If we think of the pre-ordered ste as a category (a (0,1)-category) then the meet is the limit over the given subset, if it exists, regarded as a diagram. Thus in a partially ordered set this is unique if it exists, otherwise it is unique up to isomorphism.


If xx and yy are elements of a poset, then their meet, or infimum, is an element xyx \wedge y of the poset such that:

  • xyxx \wedge y \leq x and xyyx \wedge y \leq y;
  • if axa \leq x and aya \leq y, then axya \leq x \wedge y. Such a meet may not exist; if it does, then it is unique.

In a proset, a meet may be defined similarly, but it need not be unique. (However, it is still unique up to the natural equivalence in the proset.)

The above definition is for the meet of two elements of a poset, but it can easily be generalised to any number of elements. It may be more common to use ‘meet’ for a meet of finitely many elements and ‘infimum’ for a meet of (possibly) infinitely many elements, but they are the same concept. The meet may also be called the minimum if it equals one of the original elements.

A poset that has all finite meets is a meet-semilattice. A poset that has all infima is an inflattice.

A meet of subsets or subobjects is called an intersection.



  • A meet of no elements is a top element.

  • Any element aa is a meet of that one element.

Infimum of real numbers

Often one considers infima of subsets of the real numbers \mathbb{R}, regarded with their canonical preordering, which in this case is in fact a total order.

For SS \subset \mathbb{R} a subset, say that a lower bound is an element bb \in \mathbb{R} such that sS(bs)\underset{s \in S \subset \mathbb{R}}{\forall}( b \leq s ).

Then the infimum of SS is, if it exists, that lower bound inf(S)inf(S) of SS such that for bb any other lower bound of SS then binf(S)b \leq inf(S).


As a poset is a special kind of category, a meet is simply a product in that category.

Revised on May 15, 2017 05:26:08 by Urs Schreiber (