nLab powered and copowered category

Contents

Contents

1. Definition

Throughout, let 𝒱\mathcal{V} be a Bénabou cosmos for enriched category theory.

Definition 1.1. (tensoring and cotensoring)

Let 𝒞\mathcal{C} be a 𝒱\mathcal{V}-enriched category.

  1. A powering (or cotensoring) of 𝒞\mathcal{C} over 𝒱\mathcal{V} is

    1. a functor

      [,]:𝒱 op×𝒞𝒞 [-,-] \;\colon\; \mathcal{V}^{op} \times \mathcal{C} \longrightarrow \mathcal{C}
    2. for each v𝒱v \in \mathcal{V} a natural isomorphism of the form

      (1)𝒱(v,𝒞(c 1,c 2))𝒞(c 1,[v,c 2]) \mathcal{V}(v, \mathcal{C}(c_1,c_2) ) \;\simeq\; \mathcal{C}(c_1,[v,c_2])
  2. A copowering (or tensoring) of 𝒞\mathcal{C} over 𝒱\mathcal{V} is

    1. a functor

      ()():𝒱×𝒞𝒞 (-)\otimes(-) \;\colon\; \mathcal{V} \times \mathcal{C} \longrightarrow \mathcal{C}
    2. for each v𝒱v \in \mathcal{V} a natural isomorphism of the form

      (2)𝒞(vc 1,c 2)𝒱(v,𝒞(c 1,c 2)) \mathcal{C}(v \otimes c_1, c_2) \;\simeq\; \mathcal{V}(v, \mathcal{C}(c_1,c_2) )

If 𝒞\mathcal{C} is equipped with a (co-)powering it is called (co-)powered over 𝒱\mathcal{V}.

2. Properties

Proposition 2.1. (tensoring left adjoint to cotensoring)

If 𝒞\mathcal{C} is both tensored and cotensored over 𝒱\mathcal{V} (Def. 1.1), then for fixed v𝒱v \in \mathcal{V} the operations of tensoring with vv and of cotensoring with 𝒱\mathcal{V} form a pair of adjoint functors

𝒞AAAA[v,]v()𝒞 \mathcal{C} \underoverset {\underset{ [v,-] }{\longrightarrow}} {\overset{ v \otimes (-) }{\longleftarrow}} {\phantom{AA}\bot\phantom{AA}} \mathcal{C}

Proof. The hom-isomorphism characterizing the pair of adjoint functors is provided by the composition of the natural isomorphisms (1) and (2):

𝒞(vc 1,c 2)𝒱(v,𝒞(c 1,c 2))𝒞(c 1,[v,c 2]) \array{ \mathcal{C}(v \otimes c_1, c_2) \;\simeq\; \mathcal{V}(v, \mathcal{C}(c_1,c_2) ) \;\simeq\; \mathcal{C}(c_1,[v,c_2]) }

  ▮

It follows that:

Proposition 2.2. (in tensored and cotensored categories initial/terminal objects are enriched initial/terminal)

If 𝒞\mathcal{C} is both tensored and cotensored over 𝒱\mathcal{V} then

  1. an initial object \emptyset of the underlying category of 𝒞\mathcal{C} is also enriched initial, in that the hom-object out of it is the terminal object *\ast of 𝒱\mathcal{V}

    𝒞(,c)* \mathcal{C}(\emptyset, c) \;\simeq\; \ast
  2. a terminal object *\ast of the underlying category of 𝒞\mathcal{C} is also enriched terminal, in that the hom-object into it is the terminal object of 𝒱\mathcal{V}:

    𝒞(c,*)* \mathcal{C}(c, \ast) \;\simeq\; \ast

Proof. We discuss the first claim, the second is formally dual.

By prop. 2.1, tensoring is a left adjoint. Since left adjoints preserve colimits, and since an initial object is the colimit over the empty diagram, it follows that

v v \otimes \emptyset \;\simeq\; \emptyset

for all v𝒱v \in \mathcal{V}, in particular for 𝒱\emptyset \in \mathcal{V}. Therefore the natural isomorphism (2) implies for all v𝒱v \in \mathcal{V} that

𝒞(,c)𝒞(,c)𝒱(,𝒞(,c))* \mathcal{C}(\emptyset, c) \;\simeq\; \mathcal{C}( \emptyset \otimes \emptyset, c ) \;\simeq\; \mathcal{V}( \emptyset, \mathcal{C}(\emptyset, c) ) \;\simeq\; \ast

where in the last step we used that the internal hom 𝒱(,)=[,]\mathcal{V}(-,-) = [-,-] in 𝒱\mathcal{V} sends colimits in its first argument to limits (this prop.) and used that a terminal object is the limit over the empty diagram.  ▮

3. Examples

Example 3.1. The symmetric closed monoidal category 𝒱\mathcal{V} is tensored and cotensored over itself, with tensoring being its tensor product and powering being its internal hom.

Example 3.2. For 𝒞\mathcal{C} a small 𝒱\mathcal{V}-enriched category, the 𝒱\mathcal{V}-enriched category of enriched presheaves [𝒞 op,𝒱][\mathcal{C}^{op}, \mathcal{V}] is tensored and cotensored (this Prop.)

5. References

  • G. Max Kelly, Adjunction for enriched categories, in: Reports of the Midwest Category Seminar III, Lecture Notes in Mathematics 106, Springer (1969) [doi:10.1007/BFb0059145]

Last revised on January 9, 2025 at 23:44:39. See the history of this page for a list of all contributions to it.