nLab relation between adjunctions and monads -- section

Relation between adjunctions and monads

Relation between adjunctions and monads

There is a close relation between adjunctions (adjoint functors) and monads:

Monad induced by an adjunction

Every adjunction (LR)(L \dashv R) induces a monad RLR \circ L and a comonad LRL \circ R.

(Huber 1961, §4; see eg. MacLane 1971, §VI.1 (p 134); Borceux 1994, vol. 2, prop. 4.2.1).

In detail:

Proposition

Let (𝒞,𝒟,F,U,η,ϵ)(\mathcal{C},\mathcal{D},F,U,\eta,\epsilon) be a pair of adjoint functors ie FUF \dashv U are adjoint functors where F:𝒞𝒟F \colon \mathcal{C} \rightarrow \mathcal{D}, U:𝒟𝒞U \colon\mathcal{D} \rightarrow \mathcal{C}, η A:AU(F(A))\eta_{A}:A \rightarrow U(F(A)) is the unit and ϵ B:F(U(B))B\epsilon_{B} \colon F(U(B)) \rightarrow B is the counit. Then:

  • UFU \circ F is a monad on 𝒞\mathcal{C}, with unit η\eta and multiplication U(ϵ F(A)):U(F(U(F(A))))U(F(A))U(\epsilon_{F(A)}):U(F(U(F(A)))) \rightarrow U(F(A)).

  • FUF \circ U is a comonad on 𝒟\mathcal{D}, with counit ϵ\epsilon and comultiplication F(η U(B)):F(U(B))F(U(F(U(B))))F(\eta_{U(B)}):F(U(B)) \rightarrow F(U(F(U(B)))).

Proof

We verify that we obtain a monad, the argument for the comonad is formally dual.

(1) We know that this diagram commutes:

By applying UU, we obtain the first part of the unitaly of the monad:

(2) We know that this diagram commutes: By putting B=F(A)B=F(A), we obtain the second part of the unitality of the monad:

(3) The naturality of ϵ\epsilon is written, for every f:BBf:B \rightarrow B':

We apply it to f=ϵ F(A)f=\epsilon_{F(A)} and it gives:

Finally apply UU to this diagram to obtain:

which is exactly the associativity of the multiplication of the monad.

(4) The naturality of the multiplication U(ϵ F(A)):U(F(U(F(A))))U(F(A))U(\epsilon_{F(A)}):U(F(U(F(A)))) \rightarrow U(F(A)) is obtained by two whiskerings of the counit ϵ B:U(F(B))B\epsilon_{B}:U(F(B)) \rightarrow B.

Category of adjunction-resolutions of a monad

An adjunction inducing a monad TT (as above) is also called a resolution of TT.

There is in general more than one such resolution, in fact there is a category of adjunctions for a given monad whose morphisms are “comparison functors” (eg. MacLane 1971, §VI.3).

In this category:

(e.g. Borceux 1994, vol. 2, prop. 4.2.2)

Semantics-structure adjunction

The above passage from adjunctions to monads and back to their monadic adjunctions constitutes itself an adjunction, sometimes called the semantics-structure adjunction.

Created on August 10, 2023 at 15:00:11. See the history of this page for a list of all contributions to it.