nLab simplicial infinity-groupoid

Redirected from "simplicial anima".

Contents

Definition

Definition

A simplicial \infty-groupoid or simplicial anima is an (∞,1)-functor

X:Δ opGrpd X \colon \Delta^{op} \to \infty\mathrm{Grpd}

from the opposite category of the simplex category into the (∞,1)-category ∞Grpd of ∞-groupoids.

Examples

  • A (,1)(\infty,1)-precategory 𝒞\mathcal{C} is a simplicial infinity-groupoid which satisfies the Segal conditions;

  • A (,1)(\infty,1)-category is a (,1)(\infty,1)-precategory which also satisfies the univalence axiom;

  • An \infty-groupoid or discrete (,1)(\infty,1)-category is a (,1)(\infty,1)-category all of whose morphisms are equivalences under composition.

 (∞,1)-category of simplicial ∞-groupoids

The (,1)(\infty,1)-category of simplicial \infty-groupoids and morphisms between them is the (∞,1)-category of (∞,1)-functors

Grpd Δ op=Func (Δ op,Grpd). \infty\mathrm{Grpd}^{\Delta^{op}} = Func_\infty(\Delta^{op}, \infty\mathrm{Grpd}) \,.

Grpd Δ op\infty\mathrm{Grpd}^{\Delta^{op}} is the classifying ( , 1 ) (\infty,1) -topos for linear intervals.

There is an inclusion

Grpd(,1)CatGrpd Δ op \infty\mathrm{Grpd} \hookrightarrow (\infty,1)\mathrm{Cat} \hookrightarrow \infty\mathrm{Grpd}^{\Delta^{op}}

of \infty-groupoids and of (,1)(\infty,1)-categories inside Grpd Δ op\infty\mathrm{Grpd}^{\Delta^{op}}. Furthermore, the Sierpinski ( , 1 ) (\infty,1) -topos embeds into Grpd Δ op\infty\mathrm{Grpd}^{\Delta^{op}}

Grpd Δ 1Grpd Δ op \infty\mathrm{Grpd}^{\Delta^1} \hookrightarrow \infty\mathrm{Grpd}^{\Delta^{op}}

There is also an automorphic ( , 1 ) (\infty,1) -functor

() op:Grpd Δ opGrpd Δ op (-)^\op : \infty\mathrm{Grpd}^{\Delta^\op} \to \infty\mathrm{Grpd}^{\Delta^\op}

on Grpd Δ op\infty\mathrm{Grpd}^{\Delta^{op}} which takes a simplicial \infty-groupoid to its opposite simplicial \infty -groupoid. When restricted to the (,1)(\infty,1)-subcategory (,1)CatGrpd Δ op(\infty,1)\mathrm{Cat} \hookrightarrow \infty\mathrm{Grpd}^{\Delta^\op}, the () op(-)^\op (,1)(\infty,1)-functor takes ( , 1 ) (\infty,1) -categories to its opposite ( , 1 ) (\infty,1) -category.

The simplicial interval Δ 1Grpd Δ op\Delta^1 \in \infty\mathrm{Grpd}^{\Delta^{op}} (regarded under (∞,1)-Yoneda embedding) is a tiny object: there is an amazing right adjoint

() 1/Δ 1:Grpd Δ opGrpd Δ op (-)^{1/\Delta^1} : \infty\mathrm{Grpd}^{\Delta^\op} \to \infty\mathrm{Grpd}^{\Delta^\op}

on Grpd Δ op\infty\mathrm{Grpd}^{\Delta^{op}}.

Cohesion

Since Grpd\infty\mathrm{Grpd} is an (∞,1)-topos, Grpd Δ op\infty\mathrm{Grpd}^{\Delta^{op}} is a cohesive (∞,1)-topos over Grpd\infty\mathrm{Grpd}:

Grpd Δ opcoDisc IΓ IDisc IΠ IGrpd. \infty\mathrm{Grpd}^{\Delta^{op}} \stackrel{\Pi_I}{\stackrel{\longrightarrow}{\stackrel{\overset{Disc_I}{\longleftarrow}}{\stackrel{\overset{\Gamma_I}{\longrightarrow}}{\underset{coDisc_I}{\longleftarrow}}}}} \infty\mathrm{Grpd} \,.

Here

  • Π I\Pi_I sends a simplicial \infty-groupoid to the homotopy colimit over its components, hence to its “geometric realization” as seen in Grpd\infty\mathrm{Grpd}.

  • Γ I\Gamma_I evaluates on the 0-simplex;

  • Disc IDisc_I sends a simplicial \infty-groupoid to the simplicial object which is simplicially constant on AA.

Hence cohesion of Grpd Δ op\infty\mathrm{Grpd}^{\Delta^{op}} relative to Grpd\infty\mathrm{Grpd} expresses the existence of a discrete and directed notion of path.

The simplicial interval Δ 1Grpd Δ op\Delta^1 \in \infty\mathrm{Grpd}^{\Delta^{op}} (regarded under (∞,1)-Yoneda embedding) exhibits the cohesion of Grpd Δ op\infty\mathrm{Grpd}^{\Delta^{op}} over Grpd\infty\mathrm{Grpd}, in that the relative shape modality Π I\Pi_I is equivalent to the localization at Δ 1\Delta^1

Π IL Δ 1. \Pi_I \simeq L_{\Delta^1} \,.

 Internal logic

The (,1)(\infty,1)-category of simplicial \infty-groupoids is the internal logic is given by simplicial type theory, a cohesive modal homotopy type theory equipped with the axioms for a linear interval and an axiom of cohesion for the linear interval.

 Models

Simplicial \infty-groupoids can be modeled by bisimplicial sets.

Last revised on April 12, 2025 at 12:15:36. See the history of this page for a list of all contributions to it.