nLab simplicial type theory

Contents

Contents

Idea

Simplicial type theory (Riehl & Shulman 2017, §3) is a homotopy type theory which introduces additional non-fibrant layers on top of Martin-Löf type theory to provide a logical calculus for a directed interval type and with it for geometric shapes, consisting of Segal space-types, Rezk complete-types, and covariant fibrations.

Formal presentations

There are many different ways to formalize the directed interval primitive in simplicial type theory:

  • one could simply postulate via inference rules and axioms a directed interval primitive in a separate layer.

  • one could use two-level type theory consisting of a non-fibrant layer, and then axiomatise a directed interval primitive in the non-fibrant layer

  • one could use type theory with shapes consisting of a non-fibrant layer of cubes which is a simple type theory and a non-fibrant layer of topes which is a propositional logic over the cube layer, and then define the directed interval primitive using the cube and tope layers

Two-level type theory

We use Ξ\Xi to represent the context in the non-fibrant layer, and Γ\Gamma to represent the context in the fibrant layer. Type judgments in the non-fibrant layer are represented by AexotypeA \; \mathrm{exotype}, while type judgments in the fibrant layer are just represented by AtypeA \; \mathrm{type}.

Directed interval primitive

The directed interval primitive 𝟚\mathbb{2} in simplicial type theory is a non-trivial bounded total order. Bounded total orders have many definitions in mathematics, such as a bounded partial order satisfying totality, or a lattice satisfying totality. As such, there are multiple possible sets of inference rules one could use to present the directed interval in the two-level type theory formalization.

The inference rules for the directed interval primitive (𝟚,)(\mathbb{2}, \leq) as a partial order in the two-level type theory formalization are as follows:

ΞctxΞ𝟚exotypeΞctxΞ0:𝟚ΞctxΞ1:𝟚ΞctxΞ,x:𝟚,y:𝟚xyexotypeΞctxΞ,x:𝟚,y:𝟚τ (x,y):isProp(xy)\frac{\Xi \; \mathrm{ctx}}{\Xi \vdash \mathbb{2} \; \mathrm{exotype}} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi \vdash 0:\mathbb{2}} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi \vdash 1:\mathbb{2}} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2}, y:\mathbb{2} \vdash x \leq y \; \mathrm{exotype}} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2}, y:\mathbb{2} \vdash \tau_\leq(x, y):\mathrm{isProp}(x \leq y)}
ΞctxΞ,x:𝟚refl (x):xxΞctxΞ,x:𝟚,y:𝟚,z:𝟚,p:xy,q:yztrans (x,y,z,p,q):(xz)\frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2} \vdash \mathrm{refl}_\leq(x):x \leq x} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2}, y:\mathbb{2}, z:\mathbb{2}, p:x \leq y, q:y \leq z \vdash \mathrm{trans}_\leq(x, y, z, p, q):(x \leq z)}
ΞctxΞ,x:𝟚,y:𝟚antisym (x,y):isEquiv(idtoleqgeq(x,y))whereidtoleqgeq(x,y):(x= 𝟚y)(xy)×(yx) idtoleqgeq(x,x)(id 𝟚(x))(refl (x),refl (x))\frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2}, y:\mathbb{2} \vdash \mathrm{antisym}_\leq(x, y):\mathrm{isEquiv}(idtoleqgeq(x, y))} \quad \mathrm{where} \quad \begin{array}{l} idtoleqgeq(x, y):(x =_\mathbb{2} y) \to (x \leq y) \times (y \leq x) \\ idtoleqgeq(x, x)(\mathrm{id}_\mathbb{2}(x)) \coloneqq (\mathrm{refl}_\leq(x), \mathrm{refl}_\leq(x)) \end{array}
ΞctxΞ,x:𝟚,y:𝟚totl (x,y):[(xy)+(yx)]ΞctxΞ,x:𝟚bot (x):0xΞctxΞ,x:𝟚top (x):x1\frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2}, y:\mathbb{2} \vdash \mathrm{totl}_\leq(x, y):[(x \leq y) + (y \leq x)]} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2} \vdash \mathrm{bot}_\leq(x):0 \leq x} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2} \vdash \mathrm{top}_\leq(x):x \leq 1}
ΞctxΞnontriv :(0= 𝟚1)𝟘\frac{\Xi \; \mathrm{ctx}}{\Xi \vdash \mathrm{nontriv}_\leq:(0 =_\mathbb{2} 1) \to \mathbb{0}}

The inference rules for the directed interval primitive 𝟚\mathbb{2} as a lattice in the two-level type theory formalization are as follows:

ΞctxΞ𝟚exotypeΞctxΞτ 0:isSet(𝟚)ΞctxΞ0:𝟚ΞctxΞ1:𝟚ΞctxΞ,x:𝟚,y:𝟚xy:𝟚ΞctxΞ,x:𝟚,y:𝟚xy:𝟚\frac{\Xi \; \mathrm{ctx}}{\Xi \vdash \mathbb{2} \; \mathrm{exotype}} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi \vdash \tau_0:\mathrm{isSet}(\mathbb{2})} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi \vdash 0:\mathbb{2}} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi \vdash 1:\mathbb{2}} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2}, y:\mathbb{2} \vdash x \wedge y:\mathbb{2}} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2}, y:\mathbb{2} \vdash x \vee y:\mathbb{2}}
ΞctxΞ,x:𝟚idem (x):xx= 𝟚xΞctxΞ,x:𝟚,y:𝟚comm (x,y):xy= 𝟚yx\frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2} \vdash \mathrm{idem}_\wedge(x):x \wedge x =_{\mathbb{2}} x} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2}, y:\mathbb{2} \vdash \mathrm{comm}_\wedge(x, y):x \wedge y =_{\mathbb{2}} y \wedge x}
ΞctxΞ,x:𝟚,y:𝟚,z:𝟚assoc (x,y,z):(xy)z= 𝟚x(yz)\frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2}, y:\mathbb{2}, z:\mathbb{2} \vdash \mathrm{assoc}_\wedge(x, y, z):(x \wedge y) \wedge z =_{\mathbb{2}} x \wedge (y \wedge z)}
ΞctxΞ,x:𝟚lunit (x):1x= 𝟚xΞctxΞ,x:𝟚runit (x):x1= 𝟚x\frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2} \vdash \mathrm{lunit}_\wedge(x):1 \wedge x =_{\mathbb{2}} x} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2} \vdash \mathrm{runit}_\wedge(x):x \wedge 1 =_{\mathbb{2}} x}
ΞctxΞ,x:𝟚idem (x):xx= 𝟚xΞctxΞ,x:𝟚,y:𝟚comm (x,y):xy= 𝟚yx\frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2} \vdash \mathrm{idem}_\vee(x):x \vee x =_{\mathbb{2}} x} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2}, y:\mathbb{2} \vdash \mathrm{comm}_\vee(x, y):x \vee y =_{\mathbb{2}} y \vee x}
ΞctxΞ,x:𝟚,y:𝟚,z:𝟚assoc (x,y,z):(xy)z= 𝟚x(yz)\frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2}, y:\mathbb{2}, z:\mathbb{2} \vdash \mathrm{assoc}_\vee(x, y, z):(x \vee y) \vee z =_{\mathbb{2}} x \vee (y \vee z)}
ΞctxΞ,x:𝟚lunit (x):0x= 𝟚xΞctxΞ,x:𝟚runit (x):x0= 𝟚x\frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2} \vdash \mathrm{lunit}_\vee(x):0 \vee x =_{\mathbb{2}} x} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2} \vdash \mathrm{runit}_\vee(x):x \vee 0 =_{\mathbb{2}} x}
ΞctxΞ,x:𝟚,y:𝟚asorp (x,y):x(xy)= 𝟚xΞctxΞ,x:𝟚,y:𝟚asorp (x,y):x(xy)= 𝟚x\frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2}, y:\mathbb{2} \vdash \mathrm{asorp}_\wedge(x, y):x \wedge (x \vee y) =_{\mathbb{2}} x} \qquad \frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2}, y:\mathbb{2} \vdash \mathrm{asorp}_\vee(x, y):x \vee (x \wedge y) =_{\mathbb{2}} x}
ΞctxΞ,x:𝟚,y:𝟚totl(x,y):[(xy= 𝟚x)+(xy= 𝟚y)]ΞctxΞnontriv :(0= 𝟚1)𝟘\frac{\Xi \; \mathrm{ctx}}{\Xi, x:\mathbb{2}, y:\mathbb{2} \vdash \mathrm{totl}(x, y):[(x \wedge y =_{\mathbb{2}} x) + (x \wedge y =_{\mathbb{2}} y)]} \quad \frac{\Xi \; \mathrm{ctx}}{\Xi \vdash \mathrm{nontriv}_\leq:(0 =_\mathbb{2} 1) \to \mathbb{0}}

Simplices and subshapes

We inductively define the nn-simplices as the following family of non-fibrant types:

  • The 00-simplex is the unit type in the non-fibrant layer

    Δ 01\Delta^0 \coloneqq \mathbf{1}
  • In the non-fibrant layer, let Fin(n) i:i<n\mathrm{Fin}(n) \coloneqq \sum_{i:\mathbb{N}} i \lt n be the canonical finite type with nn elements. The n+1n+1-simplex is defined as the type

    n:Δ n+1 t:Fin(n+1)𝟚 i:Fin(n)t(π 1(i+1))t(π 1(i))n:\mathbb{N} \vdash \Delta^{n + 1} \coloneqq \sum_{t:\mathrm{Fin}(n + 1) \to \mathbb{2}} \prod_{i:\mathrm{Fin}(n)} t(\pi_1(i + 1)) \leq t(\pi_1(i))

The first few simplicies can be explicitly written as

Δ 1𝟚\Delta^1 \coloneqq \mathbb{2}
Δ 2 t:Fin(2)𝟚t(1)t(0)\Delta^2 \coloneqq \sum_{t:\mathrm{Fin}(2) \to \mathbb{2}} t(1) \leq t(0)
Δ 3 t:Fin(3)𝟚(t(2)t(1))×(t(1)t(0))\Delta^3 \coloneqq \sum_{t:\mathrm{Fin}(3) \to \mathbb{2}} (t(2) \leq t(1)) \times (t(1) \leq t(0))

Subshapes of the simplicies could also be defined.

  • The boundary of the 11-simplex is defined as

    Δ 1 t:Δ 1[(t= Δ 10)+(t= 𝟚1)]\partial \Delta^1 \coloneqq \sum_{t:\Delta^1} [(t =_{\Delta^1} 0) + (t =_{\mathbb{2}} 1)]
  • The boundary of the 22-simplex is defined as

    Δ 2 t:Fin(2)𝟚[(t(0)= 𝟚0)×(t(0)t(1))+(t(0)= 𝟚t(1))+(t(0)t(1))×(t(1)= 𝟚1)]\partial \Delta^2 \coloneqq \sum_{t:\mathrm{Fin}(2) \to \mathbb{2}} [(t(0) =_{\mathbb{2}} 0) \times (t(0) \leq t(1)) + (t(0) =_{\mathbb{2}} t(1)) + (t(0) \leq t(1)) \times (t(1) =_{\mathbb{2}} 1)]

Type theory with shapes

See also

References

A talk on synthetic (infinity,1)-category theory in simplicial type theory and infinity-cosmos theory:

A proof assistant implementing simplicial type theory:

Formalization of the ( , 1 ) (\infty,1) -Yoneda lemma via simplicial homotopy type theory (in Rzk):

Last revised on March 14, 2024 at 04:40:53. See the history of this page for a list of all contributions to it.