A *strongly connected site* is a site satisfying sufficient conditions to make its topos of sheaves into a strongly connected topos.

Let $C$ be a locally connected site; we say it is a **strongly connected site** if it is also a cosifted category

If $C$ is strongly connected site, then the sheaf topos $Sh(C)$ is a strongly connected topos.

Because the left adjoint $\Pi_0$ in the sheaf topos over a locally connected site is given by the colimit functor and colimits preserve finite products on the sifted category $C^{op}$.

and

Last revised on January 6, 2011 at 01:09:54. See the history of this page for a list of all contributions to it.