Spahn sheaf on a sheaf (Rev #16, changes)

Showing changes from revision #15 to #16: Added | Removed | Changed

Motivation

Let XHX\in H be a space (an object of a category HH of spaces), let Sh(X)Sh(X) be the category of sheaves on the frame of opens on XX, let (H/X) et(H/X)^{et} denote the wide subcategory of H/XH/X with only étale morphisms. Then there is an adjoint equivalence

(LΓ):(H/X) etΓSh(X)(L\dashv \Gamma):(H/X)^{et}\stackrel{\Gamma}{\to}Sh(X)

where

  • Γ\Gamma sends an étale morphism f:UXf:U\to X to the sheaf of local sections of ff.

  • LL sends a sheaf on XX to its espace étale.

Très petit topos

We wish to clarify in which sense also the (,1)(\infty,1)- topos (H/X) fet(H/X)^{fet} can be regarded as an (,1)(\infty,1)-sheaftopos on XX. One formulation of this is to show that ((H/X) fet,O (H/X) fet)((H/X)^{fet},O_{(H/X)^{fet}}) is a locally representable structured (,1)(\infty,1)-topos - and that the representation is exhibited by formally étale morphisms.

We assume that fetfet is the admissible class defined by an infinitesimal modality \Box on HH.

Definition (universal GG-structure, classifying topos)

(1) A GG-structure OO on an (,1)(\infty,1)-topos is called universal if for every (,1)(\infty,1)-topos XX composition with OO induces an equivalence of (,1)(\infty,1)-categories if

Fun *(K,T)Str G(T)Fun^*(K,T)\to Str_G(T)

where Fun *(K,T)Fun^*(K,T) denotes the geometric morphisms ff with inverse image f *:KTf^*:K\to T.

(2) In this case we say OO exhibits KK as classifying (,1)(\infty,1)-topos for GG-structures on XX.

Remark

HH, H/XH/X, and (H/X) fet(H/X)^fet are (H/X) fet(H/X)^{fet}-structured (,1)(\infty,1)-toposes.

Proof

The classifying topos for (G/X) fet(G/X)^{fet}-structures is HH and the (,1)(\infty,1)-toposes in question are linked with HH by geometric morphisms. We obtain the required structures as the image of

Fun *(H,H/X)Str (H/X) fet(H/X)Fun^*(H,H/X)\to Str_{(H/X)^{fet}}(H/X)

respectively for HH and (H/X) fet(H/X)^{fet} in place of “H/X”.

Local representability of the très petit topos

Definition (pro objects)

Let CC be an (,1)(\infty,1)-category. We have Ind(C op)Pro(C) opInd(C^{op})\simeq Pro(C)^{op}. A pro object in in CC is a formal limit of a cofiltered diagram in CC. A cofiltered diagram is defined to be a finite diagram FF having a cone (i.e. a family of natural transformation κ cF\kappa_c\to F for all cCc\in C, where κ c\kappa_c denotes the constant functor having value cc). So we have

Pro(C)={F:DC|Disfinite,cofiltered}Pro(C)=\{F:D\to C | D\,is\,finite,\,cofiltered\}

and the hom sets are

Pro(C)(F,G)=lim eEcolim dDC(F(d),G(e))Pro(C)(F,G)=lim_{e\in E}colim_{d\in D}C(F(d),G(e))

We have (more or less) synonyms:

  • pro object, cofiltered, having a cone

  • ind object, filtered, having a cocone

Digression (DAG V, Prop.2.3.7)

(1) A morphisms f:(X,O G,X)(Y,O G,Y)f:(X,O_{G,X})\to (Y,O_{G,Y}) is called étale if (1a) the underlying geometric morphism of (,1)(\infty,1)-toposes is étale and (1b) the induced map f *:XYf^*:X\to Y is an equivalence in Str G(𝔘)Str_G(\mathfrak{U})

(2) Condition (1b) is equivalent to the requirement that ff is pp-cocartesian for p:LTop(G)LTopp:LTop(G)\to LTop the projection.

(3) Being an étale geometric morphism of structured (,1)(\infty,1)-toposes is a local property:

If there is an effective epimorphism iU i* X\coprod_i U_i\to *_X to the terminal object of XX, and f:(X,O G,X)(Y,O G,Y)f:(X,O_{G,X})\to (Y,O_{G,Y}) in LTop(G) opLTop(G)^{op} a morphism such that

f |U i:((X/U i,(O G,X) |U i)(Y,O G,Y)f_{|U_i}:((X/U_i,(O_{G,X})_{|U_i})\to (Y,O_{G,Y})

is étale, then ff is étale.

Definition (Restriction 2.3.3, DAG chapter 2.3)

Let (X,O G,X)(X,O_{G,X}) be a structured (,1)(\infty,1)-topos, let UXU\in X be an object.

(1) The restriction of XX to UU is defined to be the slice X/UX/U.

(2) The restriction (O G,X) |U(O_{G,X})_{| U} of O G,XO_{G,X} to UU is defined to be composite

GO G,XXp *X/UG\stackrel{O_{G,X}}{\to}X\stackrel{p^*}{\to}X/U

where p *p^* is base change along p:U*p:U\to *.

Definition (relative- and absolute spectrum)

Let p:GG 0p:G\to G_0 be a morphism of geometries. Let p *:=()p:LTop(G 0)LTop(G)p^*:=(-)\circ p:LTop(G_0)\to L Top(G) the restriction functor.

(1) Then there is an adjunction

(Spec G,G 0p *):LTop(G 0)p *LTop(G)(Spec_{G,G_0}\dashv p^*):L Top(G_0)\stackrel{p^*}{\to}LTop(G)

where the left adjoint is called a relative spectrum functor.

(2) Let now G 0G_0 be the discrete geometry underlying GG. Then

Spec G:=Spec G,G 0ιSpec_G:= Spec_{G,G_0}\circ \iota

is called absolute spectrum functor; here ι:Ind(G op)LTop(G 0)\iota:Ind(G^{op})\hookrightarrow LTop(G_0) denotes the inclusion of the ind objects of GG.

Definition

A GG-structured (∞,1)-topos (X,O G,X)(X,O_{G,X}) is called locally representable (aka a GG-scheme) if

  • there exists a collection {U iX}\{U_i \in X\}

such that

  • the {U i}\{U_i\} cover XX in that the canonical morphism iU i*\coprod_i U_i \to {*} (with *{*} the terminal object of XX) is an effective epimorphism;

  • for every U iU_i there exists an equivalence

    (X/U i,O G,X| U i)Spec GA i (X/{U_i}, O_{G,X}|_{U_i}) \simeq Spec_{G} A_i

    of structured (,1)(\infty,1)-toposes for some A iPro(G)A_i \in Pro(G) (in the (∞,1)-category of pro-objects in GG). In other words (X,O G,X)(X,O_{G,X}) is assumed to be locally equivalent to an absolute spectrum (aka affine scheme) of a pro object in GG.

Remark

If (C,O C)(C,O_C) is a structured topos and (C/U,(O C) |U)(C/U,(O_C)_{|U}) is an restriction thereof, then (C,O C)(C/U,(O C) |U)(C,O_C)\to (C/U,(O_C)_{|U}) is an étale morphism of structured toposes.

Remark

There exists a HH-structure OO on (H/X) fet(H/X)^{fet} such that ((H/X) fet,O)((H/X)^{fet},O) is a locally representable HH-structured (,1)(\infty,1)-topos.

Proof

O:HEO:H\to E has to satisfy

  • OO is left exact

  • For every collection of admissible (i.e. formally étale) morphisms OO{U iX}\{U_i\to X\} satisfies codescent: For every collection of admissible (i.e. formally étale) morphisms in {U iX}\{U_i\to X\}HH in which generate a covering sieve on HHXX which generate a covering sieve on , the induced map XX iO(U i)O(X)\coprod_i O(U_i)\to O(X), the induced map is an effective epimorphism in iO(U i)O(X)\coprod_i O(U_i)\to O(X)EE is an effective epimorphism in EE.

The terminal object in E:=(H/X) fetE:=(H/X)^{fet} is id Xid_X the identity on XX. The collection of all formally étale effective epimorphisms (in HH) with codomain XX covers XX. By HTT Remark 6.2.3.6. they cover id Xid_X in the slice. This follows from

Now we choose O:=rp *O:=r\circ p^* to be the composit of base change b *:HH/Xb^*:H\to H/X along b:X*b:X\to * (this functor is exact) followed by the coreflector (that we have a coreflector is shown (reference)) r:H/XEr:H/X\to E (this functor is right adjoint and hence left exact). In total OO is left exact and since our cover consists only of formally étale morphisms rr and hence OO preserve the cover.

Now we show describe that the restriction of(E,O) (E, (E,O) O) is locally equivalent to an absolute element spectrum:UU of the cover:

Let Uid XU\to id_X be an element of the cover; i.e. a formally étale effective epimorphism UXU\to X.

The restriction (E/U,(O E) |U)(E/U,(O_E)_{| U}) of (E,O)(E,O) to UU is given by:

  • Objects of E/UE/U are cocones A X U \array{A&\to &X\\\searrow &&\swarrow\\&U&} where AXA\to X is formally étale. Morphisms are pyramids with four faces and tip UU.

  • The restriction of the HH-structure OO is given as follows:

HOEp *H/UH\stackrel{O}{\to}E\stackrel{p^*}{\to}H/U

where p *p^* is base change along p:U*p:U\to * . Pro objects inEE are cofiltered diagrams in EE or -equivalently filtered diagrams in E opE^{op}

Now we show that (E,O)(E, O) is locally equivalent to an absolute spectrum:

Let H 0H_0 denote the discrete geometry (admissible morphisms are precisely all equivalences) with underlying category HH. Let h:H 0Hh:H_0\to H be a morphism of geometries (i.e. preserves finite limits, maps admissible morphism to such, the image of an admissible cover is an admissible cover). Then there is an adjunction

(Spec H 0,Hp *):LTop(H 0)Spec H 0,HLTop(H)(Spec_{H_0,H}\dashv p^*):LTop(H_0)\stackrel{Spec_{H_0,H}}{\to} LTop(H)

and the absolute spectrum is defined to be the composit

Ind(H^{op})\simeq Pro(H)^{op}\simeq Lex(H, \infty Grpd)\hookrightarrow LTop(H_0)\stackrel{Spec_{H_0,H}{\to}LTop(H)

(Pro objects in HH are cofiltered diagrams in HH or -equivalently filtered diagrams in H opH^{op})

Revision on December 17, 2012 at 06:18:35 by Stephan Alexander Spahn?. See the history of this page for a list of all contributions to it.