nLab
D0-brane

Contents

Idea

The D-brane of dimension 0+10+1 in type IIA string theory.

Properties

The worldline theory of a collection of D0-branes is supposed to be described by the BFSS matrix model.

Properties

Nonperturbative dynamics and M-theory

The non-perturbative limit of type IIA superstring theory is supposed to be M-theory compactified on a circle.

The degree-2 RR-field that the D0-brane is charged under, with local potential 1-form A 1A_1 may be understood as the KK-field induced by this compactification, hence as one part of the field of gravity in 11-dimensional supergravity.

The D0-brane itself comes from the M-wave in 11-dimensional supergravity.

One aspect of the M-theory conjecture is that type IIA string theory with a condensate of D0-branes behaves like a 10-dimensional theory that develops a further circular dimension of radius scaling with the density of D0-branes. (Banks-Fischler-Shenker-Susskind 97, Polchinski 99). See also (FSS 13, section 4.2).

Table of branes appearing in supergravity/string theory (for classification see at brane scan).

branein supergravitycharged under gauge fieldhas worldvolume theory
black branesupergravityhigher gauge fieldSCFT
D-branetype IIRR-fieldsuper Yang-Mills theory
(D=2n)(D = 2n)type IIA\,\,
D0-brane\,\,BFSS matrix model
D2-brane\,\,\,
D4-brane\,\,D=5 super Yang-Mills theory with Khovanov homology observables
D6-brane\,\,
D8-brane\,\,
(D=2n+1)(D = 2n+1)type IIB\,\,
D(-1)-brane\,\,\,
D1-brane\,\,2d CFT with BH entropy
D3-brane\,\,N=4 D=4 super Yang-Mills theory
D5-brane\,\,\,
D7-brane\,\,\,
D9-brane\,\,\,
(p,q)-string\,\,\,
(D25-brane)(bosonic string theory)
NS-branetype I, II, heteroticcircle n-connection\,
string\,B2-field2d SCFT
NS5-brane\,B6-fieldlittle string theory
D-brane for topological string\,
A-brane\,
B-brane\,
M-brane11D SuGra/M-theorycircle n-connection\,
M2-brane\,C3-fieldABJM theory, BLG model
M5-brane\,C6-field6d (2,0)-superconformal QFT
M9-brane/O9-planeheterotic string theory
M-wave
topological M2-branetopological M-theoryC3-field on G2-manifold
topological M5-brane\,C6-field on G2-manifold
solitons on M5-brane6d (2,0)-superconformal QFT
self-dual stringself-dual B-field
3-brane in 6d

References

The worldline theory of interacting D0-branes is discussed in

Discussion via Green-Schwarz sigma-models and super L-infinity algebras is in section 4.2 of

Revised on May 11, 2014 02:34:43 by Urs Schreiber (217.39.7.253)