Lorentz group

- group, ∞-group
- group object, group object in an (∞,1)-category
- abelian group, spectrum
- group action, ∞-action
- representation, ∞-representation
- progroup
- homogeneous space

The *Lorentz group* is the orthogonal group for an invariant bilinear form of signature $(-+++\cdots)$, $O(n,1)$.

In physics the theory of *special relativity* the Lorentz group acts canonically as the group of linear isometries of Minkowski spacetime preserving a chosen basepoint. This is called the action by *Lorentz transformations*.

- Lorentzian manifold
- quantum group version: quantum Lorentz group

group | symbol | universal cover | symbol | higher cover | symbol |
---|---|---|---|---|---|

orthogonal group | $\mathrm{O}(n)$ | Pin group | $Pin(n)$ | Tring group | $Tring(n)$ |

special orthogonal group | $SO(n)$ | Spin group | $Spin(n)$ | String group | $String(n)$ |

Lorentz group | $\mathrm{O}(n,1)$ | $\,$ | $Spin(n,1)$ | $\,$ | $\,$ |

anti de Sitter group | $\mathrm{O}(n,2)$ | $\,$ | $Spin(n,2)$ | $\,$ | $\,$ |

Narain group | $O(n,n)$ | ||||

Poincaré group | $ISO(n,1)$ | $\,$ | $\,$ | $\,$ | $\,$ |

super Poincaré group | $sISO(n,1)$ | $\,$ | $\,$ | $\,$ | $\,$ |

Revised on January 10, 2013 14:03:44
by Urs Schreiber
(89.204.153.52)