nLab 2-morphism

Redirected from "2-cell".
Contents

Contents

Definition

A 2-morphism in an n-category is a k-morphism for k=2k = 2: it is a higher morphism between ordinary 1-morphisms.

So in the hierarchy of nn-categories, the first step where 2-morphisms appear is in a 2-category. This includes cases such as bicategory, 2-groupoid or double category.

Shapes

There are different geometric shapes for higher structures: globes, simplices, cubes, etc. Accordingly, 2-morphisms may appear in different guises:

A globular 22-morphism looks like this:

a Layer 1 aab a\mathrlap{\begin{matrix}\begin{svg} <svg width="76" height="37" xmlns="http://www.w3.org/2000/svg" xmlns:se="http://svg-edit.googlecode.com" se:nonce="79929"> <g> <title>Layer 1</title> <path marker-end="url(#se_marker_end_svg_79929_2)" id="svg_79929_2" d="m2,18.511721c31.272522,-14.782231 42.439789,-16.425501 71.625,-1.25" stroke="#000000" fill="none"/> <path id="svg_79929_13" marker-end="url(#se_marker_end_svg_79929_2)" d="m2,24.511721c33.286949,14.464769 40.259941,16.4624 71.500008,1.75" stroke="#000000" fill="none"/> </g> <defs> <marker refY="50" refX="50" markerHeight="5" markerWidth="5" viewBox="0 0 100 100" orient="auto" markerUnits="strokeWidth" id="se_marker_end_svg_79929_2"> <path stroke-width="10" stroke="#000000" fill="#000000" d="m100,50l-100,40l30,-40l-30,-40l100,40z" id="svg_79929_3"/> </marker> </defs> </svg> \end{svg}\includegraphics[width=56]{curvearrows}\end{matrix}}{\phantom{a}\space{0}{0}{13}\Downarrow\space{0}{0}{13}\phantom{a}} b

A simplicial 22-morphism looks like this:

b a c \begin{matrix} && b \\ & \nearrow &\Downarrow& \searrow \\ a &&\to&& c \end{matrix}

A cubical 22-morphism looks like this:

b a d c \begin{matrix} & & b \\ & \nearrow & & \searrow \\ a & & \Downarrow & & d \\ & \searrow & & \nearrow \\ & & c \end{matrix}

Of course, using identity morphisms and composition, we can turn one into the other; which is more fundamental depends on which shapes you prefer.

Examples

Last revised on November 2, 2022 at 09:20:04. See the history of this page for a list of all contributions to it.