Chris J. Isham is an Emeritus Professor and Senior Research Investigator at Imperial College, London.
Michael Duff: Chris Isham: mentor, colleague, friend [arXiv:2112.13722, inspire:1997285]
Early discussion of scalar quantum field theory on anti de Sitter spacetimes:
On supersymmetry and G-structure (notably Spin(7)-structure in M-theory on 8-manifolds):
Chris Isham, Christopher Pope, Nowhere Vanishing Spinors and Topological Obstructions to the Equivalence of the NSR and GS Superstrings, Class. Quant. Grav. 5 (1988) 257 (spire:251240, doi:10.1088/0264-9381/5/2/006)
Chris Isham, Christopher Pope, Nicholas Warner, Nowhere-vanishing spinors and triality rotations in 8-manifolds, Classical and Quantum Gravity, Volume 5, Number 10, 1988 (cds:185144, doi:10.1088/0264-9381/5/10/009)
Proposal that the Kochen-Specker theorem suggests to understand quantum physics via the internal logic of (what later would be called) a Bohr topos:
Jeremy Butterfield, John Hamilton, Chris Isham, A topos perspective on the Kochen-Specker theorem, I. quantum states as generalized valuations, Internat. J. Theoret. Phys. 37 11 (1998) 2669-2733 [MR2000c:81027, doi:10.1023/A:1026680806775]
II. conceptual aspects and classical analogues Int. J. of Theor. Phys. 38 3 (1999) 827-859 [MR2000f:81012, doi:10.1023/A:1026652817988]
III. Von Neumann algebras as the base category, Int. J. of Theor. Phys. 39 6 (2000) 1413-1436 [arXiv:quant-ph/9911020, MR2001k:81016,doi:10.1023/A:1003667607842]
IV. Interval valuations, Internat. J. Theoret. Phys. 41 4 (2002) 613-639 [MR2003g:81009, doi]
with some review and outlook in
and then
Andreas Döring, Chris Isham, A Topos Foundation for Theories of Physics
I. Formal Languages for Physics, J. Math. Phys. 49 (2008) 053515 [arXiv:quant-ph/0703060, doi:10.1063/1.2883740]
II. Daseinisation and the Liberation of Quantum Theory, J. Math. Phys. 49 (2008) 053516 [arXiv:quant-ph/0703062, doi:10.1063/1.2883742]
III. The Representation of Physical Quantities With Arrows, J. Math. Phys. 49 (2008) 053517 [arXiv:quant-ph/0703064, doi:10.1063/1.2883777]
IV. Categories of Systems, J. Math. Phys. 49 (2008) 053518 [arXiv:quant-ph/0703066, doi:10.1063/1.2883826]
On differential geometry in mathematical physics:
Last revised on July 1, 2024 at 16:25:07. See the history of this page for a list of all contributions to it.