nLab G-d-operad

Redirected from "posites".
Content

Context

Equivariant higher algebra

Higher algebra

Content

Idea

GG-dd-operads are to G-∞-operads as d-operads are to ∞-operads.

Definition

Definition

Fix dd \in \mathbb{N} a natural number A G G - \infty -operad 𝒪 \mathcal{O}^{\otimes} is essentially dd (or a GG-dd-operad) if, for all colors X 1,,X n,YU𝒪X_1,\dots,X_n,Y \in U\mathcal{O}, the space Mul 𝒪(X 1,,X n;Y)\mathrm{Mul}_{\mathcal{O}}(X_1,\dots,X_n;Y) is ( d 1 ) (d-1) -truncated

References

Last revised on July 15, 2024 at 13:55:01. See the history of this page for a list of all contributions to it.